NOTICE!

ALL DRAWINGS
ARE LOCATED
AT THE END OF
THE DOCUMENT

TYPE OF PACKAGE TYPE OF FUNDING (check one) WORK PERFORMED BY (check one)	ROCKY FLATS ENVIRONMENTAL ENGINEERING ORDER TECHNOLOGY SITE				ERING ORDER			
FINAL WORK ORDER (WCP) OTHER ISPECIFY OTHER DESIGN MODIFICATION PACKAGE DEGINEERING CHANGE REQUEST (ECR) STATEMENT OF WORK (SOW) TITLE IDESIGN MODIFICATION PACKAGE DEGINEERING CHANGE REQUEST (ECR) STATEMENT OF WORK (SOW) TITLE IDESIGN MODIFICATION PACKAGE DEGINEERING CHANGE REQUEST (ECR) CONTRACT MODIFICATION ADDENDA TITLE IDESIGN MODIFICATION PACKAGE DESIGN REPORT (CDR) CONTRACT MODIFICATION ADDENDA TITLE IDESIGN MODIFICATION PACKAGE DESIGN GENTERIA (DC) ENGINEERING CHANGE REPORT (CDR) CONTRACT MODIFICATION (ADDENDA TITLE IDESIGN MODIFICATION PACKAGE CONCEPTUAL DESIGN REPORT (CDR) CONTRACT MODIFICATION (ADDENDA TITLE IDESIGN MODIFICATION PACKAGE CONCEPTUAL DESIGN REPORT (CDR) CONTRACT MODIFICATION (ADDENDA TITLE IDESIGN MODIFICATION PACKAGE CONCEPTUAL DESIGN REPORT (CDR) INCOMPRESE MODIFICATION MAD CONCEPTUAL DESIGN REPORT (CDR) INCOMPRESE MODIFICATION MAD CONCEPTUAL DESIGN REPORT (CDR) SEE BACK OF FORM AND PROCEDURE FOR ADDITIONAL DISTRIBUTION INFORMATION DISTRIBUTION (Defined by the applicable Engineer) PACKAGE CONTRACTOR PACKAGE CONTRACTOR PACKAGE CONTRACTOR PACKAGE CONTRACTOR PACKAGE CONTRACTOR PACKAGE CONTRACTOR THAT MAD CONTRACT AND PROCEDURE FOR ADDITIONAL DISTRIBUTION INFORMATION THAT AND ADDITIONAL DISTRIBUTION TO A SERVE DESIGN (ADDITIONAL DISTRIBUTION SHORES ARE DESIGN) THE PACKAGE CONTRACTOR THAT MAD CONTRACT AND PROCEDURE DISTRIBUTION TO A SERVE DESIGN ADDITIONAL DISTRIBUTION SHORES AND SERVE DESIGN ADDITIONAL	TYPE OF PACKAGE TYPE OF FUNDING (check one) W				YORK PERFORMED BY (check one)			
TITLE I DESIGN MODIFICATION PACKAGE INTILE II SOSIGN MODIFICATION PACKAGE INTILE II BASBUILT PACKAGE INTILE II SASBUILT PAC	☐ WORK ORDER (WCF)			■ MAINTENANCE ■ OTHER ■ ON SITE CONTRACTOR ✓				
TITLE II DESIGN MODIFICATION PACKAGE CONCEPTUAL DESIGN REPORT (CDR) CONTRACT MODIFICATION MODIFICATION MODIFICATION MODIFICATION MAD DESIGN CRITERIA (DC) ENGINEERING ANALYSIS / STUDY MINOR MODIFICATION (MM) PLANT STANDARD SAFETY EVALUATION REPORT (SER) SERVICES PACKAGE (GES) DESIGN / PURCHASE SPECIFICATION ITEST PROCEDURE SEE BACK OF FORM AND PROCEDURE FOR ADDITIONAL DISTRIBUTION INFORMATION DISTRIBUTION (Defined by the applicable Engineer) PACKAGE CONTENTS Name/Organization (Use continuous nebed as required) Bldg Bor D Copies of as listed bloow (Use continuous on sheets as necessary) Engineering Quelty Support (final only) T130-D 1 Fifteen Sets of Drawings Rushed Organization (Use continuous on sheet as a necessary) Engineering Quelty Support (final only) T130-D 1 Fifteen Sets of Drawings Rushed Organization (Use continuous on sheet as necessary) Engineering Quelty Support (final only) T130-D 1 Fifteen Sets of Drawings Rushed Organization (Use continuous on sheet as necessary) Engineering Quelty Support (final only) T130-D 1 Fifteen Sets of Drawings Rushed Organization (Use continuous on sheet as necessary) Engineering Quelty Support (final only) T130-D 1 Fifteen Sets of Drawings Rushed Organization (Use continuous on sheet as necessary) Engineering Quelty Support (final only) T130-D 1 Fifteen Sets of Drawings Rushed	DOCUMENT TYPE (CHECK	ONE)	11	OTHER (S	PECIFY	")		
TITLE III AS BUILT PACKAGE INFORMORICATION MM INFORMATION INFORMATI							STATEMENT OF WORK (SOW)	
MINOR MODIFICATION MAN PLANT STANDARD SAFETY EVALUATION REPORT (SER)								
SEE BACK OF FORM AND PROCEDURE FOR ADDITIONAL DISTRIBUTION INFORMATION DISTRIBUTION (Defined by the applicable Engineer) Name/Organization (Use continuation sheets as required) Bidg B or D Copies Engineering Quality Support (final only) 1300 B Z HO Follow (Use continuation sheets as required) PACKAGE CONTENTS Anached documents are as listed on the Document Index or as Instead on the Document Index or as Instead below (Use continuation sheets as nacessary) Figure 1300 B Z HO Follow (Use continuation sheets as nacessary) For Instead (Use Continuation Sheets as nacessary) F								
SEE BACK OF FORM AND PROCEDURE FOR ADDITIONAL DISTRIBUTION INFORMATION DISTRIBUTION (Defined by the applicable Engineer) Name/Organization (Use confirmation sheets as required) Bidg D Dwgs # 60 Attached documents are as listed on the Document Index or as listed below (Use confirmation sheets as necessary) Engineering Quality Support (Inal only) 1730-D 1 Fifteen Sets of Drawings Rushed or as listed below (Use confirmation sheets as necessary) Engineering Quality Support (Inal only) 1730-D 1 Fifteen Sets of Drawings Rushed Peter Mark in 080 B Z the Fallow (Inal only) 1755 BDm 130 B Z the Fallow (Inal only) 17							· · · · · · · · · · · · · · · · · · ·	
DISTRIBUTION (Defined by the applicable Engineer) Name/Organization (Use continuation sheets as required) Bid Bord Dougs of an istated below (Use continuation sheets as no accessor) Engineening Quality Support (Intal anity) Figure Mart in ORO B The Brakere is a sisted below (Use continuation sheets as no accessor) Peter Mart in ORO B The Brakere is a fraction of Drawling's Rushed Peter Mart in ORO B The Brakere is a fraction of Decement Index ORO B The Brakere is a fraction of Decement Index ORO B The Brakere is a fraction of Decement Index ORO B The Brakere is a fraction of Decement Index ORO B The Brakere is a fraction of Decement Index Oracle Pickere is a fraction of Decement Index Oracle Picker is a fraction of Decement Index Or					*********			
Name(Organization) (Use continuation sheets as required) Bidd B or D Copies Figure entrol Quality Support (final only) Figure entrol Quality Support (f	SEE BACK O)F FORM AN	D PHO	CEDUF	(E FOF	ADDITIONAL DISTHI	IBUTION INFORMATION	
Continuation sheets as required) Bidg B or D Copies or as listed below (Use continuation sheets as necessary) Engineering Quality Support (final only) T130-0 1 Fifteen Sets of Drawings Rushed Pobe Mantin 080 B Z to Enclose of Drawings Rushed Long Piction Winglet 080 B Z to Enclose of Special Copies of Copies of Special Copies of S	DISTRIBUTION (Defined	by the applica	ble Eng	ineer)		PACKA	AGE CONTENTS	
Peter Martin 080 B 7 + n G. Pickere I. Copies of Spec's Lon Peter in Windt 080 B 2 + 10 Fallow 10/12/15 BDm Gree Pickere I 130 B 2 Vance Ont 2 Tisot B 1 Pate Martin Prungs College D 5 Procurement Picker B 5 5 Eng Documentation (Inal dwgs only) 130 C size ong ADDITIONAL DIST (attach cont shi) TOTAL COPIES REQUIRED COMMENTS AND SPECIAL INSTRUCTIONS Procurement Care Bidge Room By (date) Procurem		equired)	Bldg			181	,	
Pete Mart in 080 B 7 th G. Pickere I. Copies of Spec's Long Pickwel 130 B 2 Vance Critical 130 B 2 Vance Critical 130 B 1 Pate Martin Promyscolo 00 D 5 Pite Martin Promyscolo 00 D 5 Pi	Engineering Quality Suppo	ort (final only)	T130-D		1	Fifteen Sets	of Drawings Rushed	
Lon Peter wa Winght 080 B Z + 10 Fallow 10/12/15 BDm Gree Pickere 130 B Z Vance Ont 3 Tiso B / Kieth Ma Cloul RMRS 130 B / Pate Martin Promission 130 B / Pate Martin Promission 130 C size one CV 2 ystim Cet 10, 1995 Eng Documentation (final dwgs only) 130 C size one one one one one one one one one on			080	B	7	to G. Pick		
Gree Pickerel 130 B Z Vance Ont 2 Ti307 B / Kith MacCoul RMRS 130 B Pate Martin Processal 000 D S Reference to the first page attached 20 P of Drawnos attached Commentation (final dwgs only) 130 C size ong and approximation (final dwgs only) 130 C size ong approximation approximation ong approximation approximation ong approximation approxi	Lori Peterson Wi	richt-		B	2			
Vance Onto 3 Tisos B / Kieth Mac Child RMR 130 B / Kieth Mac Child RMR 130 B / Pate Martin Promission COSD D S Pate Martin Promission COSD D S Put Accid Duly Kles Cau Col Jystem Cet (U, 1995) Eng Documentation (final dwgs only) 130 C size ong Reviewed, For Classification ong ong Reviewed, For Classification Doginal Eng Documents (ED 130 one ong BY KB-174-C2 ADDITIONAL DIST (attach cont shi) PATE TOTAL COPIES REQUIRED # Total Text Pages attached 2/7 # of Drawnos attached COMMENTS AND SPECIAL INSTRUCTIONS Return Comments to Hold Inscrement Caus Bidg Roam By (date) Full Me ATABLETOP REVIEW MEETINS HAR BEEN SCHEDULED SPECS ARE TWO SIDED ON AT AMPM INFROOV IN BUILDING ENDIFORM NUMBER 5.DG TITLE PROJECT: WOR NUMBER 5.DG TITLE REGISTRON INSTRUCTION ON AT AMPM INFROOV IN BUILDING ENDIFORM NUMBER 5.DG TITLE AGOLIDARI/ Related Job = BC COJPOINTION INFROM DATE EXT / Pager Ballin Madden B. Land D/2/45 4372/1044 EC # Sub # REF EC # ED DISTRIBUTION DATE ED CHARGE NUMBER 37/427 (CES 001)		7)		B	2			
RETURN PROGRESSION DS PART ACCC QUIG FALES CON CLY JYSTEM CET (C. 1995) RETURN PROGRESSION DS PART ACCC QUIG FALES CON CLY JYSTEM CET (C. 1995) REVIEWED, FOR CLASSIFICATION BY KB-174-C- DATE TOTAL COPIES REQUIRED COMMENTS AND SPECIAL INSTRUCTIONS RETURN COMMENTS IO BIG REVIEW MEETING HARBEEN SCHEDULED SPECS FALE TWO SIDED NATOR MEETING MEETING HARBEEN SCHEDULED SPECS FALE TWO SIDED NATOR MEDITAL PROGRESSION IN BUILDING CONDIECTIVE NUMBER 5.05 TITLE 999035 S. te Description of the Company of the Compa					1			
Pate Martin Promission CVD D S Put Accid duly files cau CV 24575111 Cet 10,1995 Eng Documentation (final dwgs only) 130 C size ond Additional Eng Documents / ED 130 one ong ADDITIONAL DIST (attach contish) TOTAL COPIES REQUIRED # Total Text Pages attached 2/1 = of Drawnos attached COMMENTS AND SPECIAL INSTRUCTIONS Return Comments to Hold Trocument Coas Blog Room By (date) Pus field Me A TABLETOP REVIEW MEETING HAS BEEN SCHEDULED SPECS ALE TWO SIDED ON AT AMPM INFOON IN BUILDING ENGLY OF NUVSER 5.DG TITLE 999035 Size Dissin Seed Collection DATE ENTIPOSE AGGINORAL FRINTED SCOTT OF THE SIGNI DATE ENTIPOSE AGGINORAL FRINTED SCOTT OF THE SIGNI DATE ENTIPOSE AGGINORAL FRINTED SCOTT OF THE SIGNI DATE ED CHARGE NUTSER 37627 GESOOI		O OMOC			1			
Reviewed for classification Organia Eng Documentation (thial dwgs only) 130 C size ong ADDITIONAL DIST (attach cont sht) TOTAL COPIES REQUIRED COMMENTS AND SPECIAL INSTRUCTIONS Hold Trocurement Cases Blidg Rosen By (date) A TABLETOP REVIEW MEETING HAS BEEN SCHEDULED SPECS ARE TWO SIDED IN HOOM IN BUILDING SPECS ARE TWO SIDED IN HOOM IN BUILDING SPECIAL INSTRUCTIONS AND IN BUILDING COMMENTS AND SPECIAL INSTRUCTIONS RETURN Comments to Blidg Rosen By (date) A TABLETOP REVIEW MEETING HAS BEEN SCHEDULED ON AT AMMEN IN HOOM IN BUILDING COMMENTS AND SIDED ON AT AMMEN IN HOOM IN BUILDING COMMENTS AND SPECIAL INSTRUCTIONS AND IN BUILDING COMMENTS AND SPECIAL INSTRUCT	Meun maccio	WC MMKS	130					
Reviewed for classification Organia Eng Documentation (thial dwgs only) 130 C size ong ADDITIONAL DIST (attach cont sht) TOTAL COPIES REQUIRED COMMENTS AND SPECIAL INSTRUCTIONS Hold Trocurement Cases Blidg Rosen By (date) A TABLETOP REVIEW MEETING HAS BEEN SCHEDULED SPECS ARE TWO SIDED IN HOOM IN BUILDING SPECS ARE TWO SIDED IN HOOM IN BUILDING SPECIAL INSTRUCTIONS AND IN BUILDING COMMENTS AND SPECIAL INSTRUCTIONS RETURN Comments to Blidg Rosen By (date) A TABLETOP REVIEW MEETING HAS BEEN SCHEDULED ON AT AMMEN IN HOOM IN BUILDING COMMENTS AND SIDED ON AT AMMEN IN HOOM IN BUILDING COMMENTS AND SPECIAL INSTRUCTIONS AND IN BUILDING COMMENTS AND SPECIAL INSTRUCT	D-4-14-5)/	65.00	_	~			
CV System Cet 10,1995 An ourement Picker B 15 bom Eng Documentation (final dwgs only) 130 C size ong Reviewed For Classification ong Reviewed For Classifica	PACE MARCIN P	mungs ON	<u> </u>	0	<u> </u>			
CV System Cet 10,1995 An ourement Picker B 15 bom Eng Documentation (final dwgs only) 130 C size ong Reviewed For Classification ong Reviewed For Classifica	*			<u> </u>		7 (/		
Eng Documentation (final dwgs only) 130 C size ond Onginal Eng Documents / ED 130 ong ong ADDITIONAL DIST (attach cont sht) TOTAL COPIES REQUIRED COMMENTS AND SPECIAL INSTRUCTIONS Hold Trocument Come Bidg Room By (date) Fuz / C2L Me A TABLETOP REVIEW MEETING HAS BEEN SCHEDULED SPECS FRE TWO SIDED ON AT AM PM INFOOM IN BUILDING CHOSECT / WC- NUVSER S.DG TITLE PROJECT / WC- NUVSER S.DG TITLE AGGINGAL / Related Joo = EO COSPSI NATOR (FOR SIGN) AGGINGAL / Related Joo = EO COSPSI NATOR (FOR SIGN) EC # Sub = REF EO # EO DISTRIBUTION DATE ED CHARGE NUTSER 37(27) CESOO1				ļ		TV /1CC		
Eng Documentation (final dwgs only) 130 C size ond Onginal Eng Documents / ED 130 onc ong ADDITIONAL DIST (attach cont sht) TOTAL COPIES REQUIRED # Total Text Pages attached Z/7 # of Drawnos attached COMMENTS AND SPECIAL INSTRUCTIONS Hold Tracurement (present bloggy of the present of the pre				<u> </u>		LV 7	45/51m Cet 10,1445	
Eng Documentation (final dwgs only) 130 C size ond Onginal Eng Documents / ED 130 onc ong ADDITIONAL DIST (attach cont sht) TOTAL COPIES REQUIRED # Total Text Pages attached Z/7 # of Drawnos attached COMMENTS AND SPECIAL INSTRUCTIONS Hold Tracurement (present bloggy of the present of the pre				-			Trible bullet title	
Original Eng Documents / ED 130 onc ong ADDITIONAL DIST (attach cont sht) TOTAL COPIES REQUIRED COMMENTS AND SPECIAL INSTRUCTIONS Hold Tracurement Care Bidg Room By (date) Pug/C2L IME A TABLETOP REVIEW MEETING HAS BEEN SCHEDULED SPECS ARE TWO SIDED ON AT AMPM INTROOM IN BUILDING CROJECT / WCF NUVSER 5.0G TITLE GREAT INITIATOR (PINT SIGN) ECR T INITIATOR (PINT SIGN) AGOI 10731/ Related Joo = 120 CGD FDI NATOR (PINT SIGN) ECR T Sub TRACE BAIL MASSE AGOI 10731/ Related Joo = 120 CGD FDI NATOR (PINT SIGN) ECR T Sub TRACE BAIL MASSE AGOI 10731/ Related Joo = 120 CGD FDI NATOR (PINT SIGN) ECR T Sub TRACE BAIL MASSE AGOI 10731/ Related Joo = 120 CGD FDI NATOR (PINT SIGN) ECR T Sub TRACE BAIL MASSE BO DISTRIBUTION DATE ED CHARGE NUTSER ED CHARGE NUTSER	procurement	PICKU	ρ	B	/5	BOM		
ADDITIONAL DIST (attach cont sht) TOTAL COPIES REQUIRED # Total Text Pages attached 2/7 # of Drawnos attached COMMENTS AND SPECIAL INSTRUCTIONS RETURN Comments to Hold Trocurement Care Bldg Room By (date) A TABLETOP REVIEW MEETING HAS BEEN SCHEDULED ON AT AMPEN IN BUILDING PROJECT / WCF NUVSER 5-DG TITLE GREE INSTRACTOR (PROF Sign) ECR # INITIATOR (PROF Sign) Additional / Related Job = EO COSPONATOR (PROF Sign) Additional / Related Job = EO COSPONATOR (PROF Sign) EC # Sub # REF EC # EO DISTRIBUTION DATE ED CHARGE NULL BER 37627 (CESOOI)	Eng Documentation (final o	dwąs only)	130	C size	ona		REVIEWED FOR CLASSIFICATION	
TOTAL COPIES REQUIRED # Total Text Pages attached Z/) # of Drawings attached COMMENTS AND SPECIAL INSTRUCTIONS Return Comments to Hold Trocurement Copies Bidg Room By (date) Puz / C. 22 Me A TABLETOP REVIEW MEETING HAS BEEN SCHEDULED SPECS PLE TWO SIDED ON AT AMPEN IN ROOM IN BUILDING PROJECT / WCF NUVSER S.DG TITLE 989035 S. te S.S. I.M. See: Collect Internal Treating Town Town Town Town Town Town Town Town	Original Eng Documents /	ED	130	one	ong		BY KB-174-62	
COMMENTS AND SPECIAL INSTRUCTIONS Hold Trocurement Core Bidg Room By (date) Pur /C22 Me ATABLETOP REVIEW MEETING HAS BEEN SCHEDULED ON AT AM RM IN BUILDING FROM IN BUILDING FROM DATE EXT / Paper Greg Users Land Meet Do 10/5/95 5634/5786 AGGIIODAT/ RPIRITED JOD = EO COSPOLNATOR IMPROSIGNI DATE EXT / Paper Bair Madden Book Do 10/2/95 4372/7644 EC # Sub # REF EO # EO DISTRIBUTION DATE ED CHARGE NULL SER 37627 CESOOL	ADDITIONAL DIST (attach	h cont sht)					DATE	
COMMENTS AND SPECIAL INSTRUCTIONS Hold Trocurement Core Bidg Room By (date) Pur /C22 Me ATABLETOP REVIEW MEETING HAS BEEN SCHEDULED ON AT AM RM IN BUILDING FROM IN BUILDING FROM DATE EXT / Paper Greg Users Land Meet Do 10/5/95 5634/5786 AGGIIODAT/ RPIRITED JOD = EO COSPOLNATOR IMPROSIGNI DATE EXT / Paper Bair Madden Book Do 10/2/95 4372/7644 EC # Sub # REF EO # EO DISTRIBUTION DATE ED CHARGE NULL SER 37627 CESOOL	TOTAL COPIES REQU	IRED				# Total Text Pages at	tached Z/) # of Drawings attached	
Hold Fracurement Care Bidg Room By (date) Pure / C. 22 Me ATABLETOP REVIEW MEETING HAS BEEN SCHEDULED SPECS ARE TWO SIDED ON AT AM RM IN BUILDING FROJECT, WCF NUVSER 5.DG TITLE 989035 S. VE D. SS. IN See D. Collection on J. Treating TOWAY ECR # INITIATOR (Print Sign) DATE EXT / Pager Greg Distribution DATE EXT / Pager BOILD MASSEN BOILD MASSEN BOILD MASSEN BO DISTRIBUTION DATE ED CHARGE NUTSER 37627 GESOOI	COMMENTS AND S	PECIAL INS	TRUCT	IONS		Return Comments to		
Pug/C22 Me A TABLETOP REVIEW MEETING HAS BEEN SCHEDULED ON AT AM PM IN BUILDING PROJECT / WCF NUVSER 5.DG TITLE 989035 S. te DSS IN Seep Collection of Treating TOUT ECR = INITIATOR (PROF SIGN) Additional / Related Job = EC COSPOINATOR (PROF SIGN) EC = Sub = REF EC = ED DISTRIBUTION DATE ED CHARGE NUMBER 37627 CESOO1								
SPECS PRE TWO SIDED ON AT AM RM IN BUILDING CHOJECT / WCF NUMSER SLOG TITLE 989035 S. te Described Collection on Treating tout ECR # INITIATOR (PRIN SIGN) Additional / Related Job = EC COSFDINATOR (PRIN SIGN) Additional / Related Job = EC COSFDINATOR (PRIN SIGN) EC# Sub# REF EO# EO DISTRIBUTION DATE ED CHARGE NUMBER 37627 GESOOI				رمن		\ <u></u>		
IN BUILDING CHOUSET WORK NUMBER SLOG TITLE 989035 Site Propries Seep Collection on I Treating tout ECR # INITIATOR (PRIC SIGN) Additional / Related Job = EO COSPDINATOR (PRIC SIGN) Blair Madden Blair D/12/95 4372/764 EC# Sub# REFEC# EO DISTRIBUTION DATE ED CHARGE NUMBER 37627 GESOOT	<u> </u>							
SHOUTH NUMBER SLOG TITLE 989035 Site Dissing Seep Collection on 1 Treating TOWT ECR # INITIATOR (PIRT SIGN) Oreg Literel Light Med Log Distribution Date Ext / Paper Blair Madden Blair D/12/95 4372/764 EC# Sub# REFEO# EO DISTRIBUTION DATE ED CHARGE NUMBER 37627 GES 001	SPECS ARE	Two	51.	DE17				
989035 Site Pissing Seep Collection on Treating town ECR # INITIATOR (MINT SIGN) Additional/Related Job = EO COSFDINATOR (MINT SIGN) EC # Sub # REF EO # EO DISTRIBUTION DATE ED CHARGE NUMBER 37627 GESOOI								
ECR # INITIATOR (PIPE SIGN) Orea Pulcered Law In head 10/5/95 5634/5786 Additional/Related Job = EO CODEDINATOR (PIPE SIGN) EC # Sub # REF EO # EO DISTRIBUTION DATE ED CHARGE NUT'SER 37627 GES 001								
Great Charles Land Leas 10/5/95 5634/5786 Additional/Related Job = EO COSPDINATOR IMPROSIGNI Blair Madden Blair b/12/95 4372/7764 EC # Sub # REF EC # EO DISTRIBUTION DATE ED CHARGE NUT'SER 37627 GES 001						eep Collect		
Additional/Related Job = EC COSPSINATOR IMPRISION DATE DATE EXT Pager Blair Madsen Blair D/12/95 4372/7164 EC # Sub # REF EC # EO DISTRIBUTION DATE ED CHARGE NULL SER 37627 GES 001								
Blair Madsen Blair b/12/95 4372/7164 EC # Sub # REF EC # EO DISTRIBUTION DATE ED CHARGE NUI'BER 37627 GESOOI	Additional / Related for				Signi	- La Jean		
Sub # REF EC # EO DISTRIBUTION DATE ED CHARGE NUTSER	7.00.10 1g/7 17-16/e0 000 =					Block		
	EC #					EO DISTRIBUTION		
	37627 6	EES001						

DES 253/1 1(2) 01/24/95

ADMIN RECCRD

Page 1 of ___

BZ-A-000477

PROJECT COVER/INDEX SHEET

PROJECT NUMBER: 989035						•
IS THIS A TEMPORARY MODIFICATION?			TM	ŧ		
TITLE: Passive Seep Collection and Treatm	mt cu-z				DATE	· 10/5/95
TEAM MEMBERS: 6 Pickerel of Eng. 0	f		_of	ــــــ بــــــ		of,
ofof	_of		of_			of
B = Technical Baseline R = Reference I = For Imple (To be as-built) (Not to be as-built) of work or d		S = Sup for distr		(Not	Date	- Date of Issue
Document Description, Number		В	or R	10	or S	Date
NOTE Documents not kept in Engineering Documentation which are listed shall reference the storage location						
Technical Specifications			R	工		K/5/93
Dawings 51267-0101			R	I		9/21/95
51267 -0102			R	T		9/21/95
51267-0103			12	I		9/21/95
5/267-0104			R	T		9/21/95
51267-0105			R	I		9/21/95
5/267-0106			12	T		9/21/95
51267-0107			R	工		9/21/95
GES Screen			R		5	10/5/95
Sistem Classification Form			R		5	115/95
System Classification Form Technical Scape Covered by Fech Spec	E, catous					
						
Preparer. Greg Pickerel Gregfished 10/5/95 Approval Greg Pickerel Gregfished 10/6/95 Approval Greg Pickerel Gregoriaste	Checker _	n Revie	W Ken	1	religi	prinveign/date /G/05 prinveign/date
Interdiscipline Concurrences:	Other Con	currenc		7) (1770	
print/sign/date				· ·		print/sign/date
print/sign/date						print/sign/date

Attach continuation page(s) if needed DES 207/8 8(8) 05/01/95

SYSTEM CLASSIFICATION FORM
WORK CONTROL NO 989035 TITLE Passive Seep Collection and Treatment
System Name Landfill Leachate Collection
Blog. Site Location: Old Land Fill
61.1 SYSTEM REFERENCE DOCUMENTS OU 7 IAG Decision Decum
6 1.2 SYSTEM FUNCTIONS AND OPERATING MODES NOTE: This is a prework classification and must remain with and govern all work to SSCs until all work and document changes are complete Functions to collect Seep water antireat before release. The water is currently not being treated and there are not ALASS to meet 6 2 SYSTEM CATEGORY CLASSIFICATION NOTE Identity references from those documents listed in Section 6 1 1 and enter technical justification on appropriate space below
Category 1
This system is classified as Cat 4 hecause
it does not fit into the other categories.
The system wa Non Safety Class tem,
Cooperant Engineer Prin Name Cooperant Engineer Signs are Example Date

GES SCREEN

Jo	ob#.	<u>989035</u> Bldg <u>Site</u>	-	_
Т	itle:	Passive Seep Collection and Treatment	<u>ou-</u>	<u>-</u> 7
E	escn	puon: Collect Ou-7 Seep 40 and treat		_
		Rolease to Ou-7 Pond		_
S	ECT	ION A - NUCLEAR WORK PROCESS REQUIRED	Y	N
1	. 1	Does work affect/modify Vital Safety Systems?		X
	a b	Impact a vital safety function during installation, modification, or repair? Will this work create a "Violation" with respect to any Criticality Safety Operating Limit (CSOL) or Nuclear Material Safety Limit (NMSL),		× ×
	d		_	X
	e	Operational Safety Requirement (OSR)?		<u>×</u> ×
2	t	Does work involve Hazardous Chemicals of sufficient quantity and/or type o pose potential for catastrophic events? If applicable, refer to COEM-DES-223, Appendix 6)	_	<u></u>
S	ECT	ION B - SAFEGUARDS AND SECURITY SYSTEMS		
1	r	Does work affect Safeguards and Security Systems?		\mathcal{X}
S	ECT	ION C - GENERAL ENGINEERING SUPPORT PROGRAM (GES) ELIGIBIL	ITY	
â	ll ans	answer to any of the above questions is "yes," then this modification does not quawers are "no," use GES program. Tasks "failing" the screen may still use GES padix 7 and Section 6.4 for the EDMPP development is approved by E&SS management is approved by E&SS management.	rogram,	
1	١	Work is assigned to GES program		
	Í	Treshuker 10/5/45 Preparing Engineer Date		

DES 207/6 1(1) 05/01/95

Technical Specifications

Passive Seep Collection and Treatment System
Operable Unit No. 7

Revision 1

September 1995

U S Department of Energy Rocky Flats Environmental Technology Site Golden, Colorado

Rocky Flats Environmental Technology Site OU 7 Passive Seep Collection and Treatment System Category	Manual Section Effective Date Organization		RF/ER-94-00044 Approval, Rev 1 September 1995 RMRS
Technical Specifications			
Passive Seep Collection and Treatm	nent System		
Operable Unit No. 7			
APPROVED BY:			
Landfill Closures Manager		Date	
			· ·
Project Manager		Date	
QA Manager		Date	

Rocky Flats Environmental Technology Site
OU 7 Passive Seep Collection
and Treatment System
Category

Manual Section Effective Date Organization RF/ER-94-00044 Table of Contents, Rev 1 September 1995 RMRS

Table of Contents

- 1 SECTION 02200 EARTHWORK
- 2 SECTION 02935 RIPRAP
- 3 SECTION 02970 DRAIN ROCK, PVC LINER, AND FILTER FABRIC
- 4 SECTION 03100 CONCRETE FORMWORK
- 5 SECTION 03300 CAST-IN-PLACE CONCRETE
- 6 SECTION 03400 PRECAST CONCRETE
- 7 SECTION 05500 METAL FABRICATIONS
- 8 SECTION 09900 PAINTING
- 9 SECTION 13200 PASSIVE TREATMENT TANK
- 10 SECTION 13210 FILTERS, DISPOSABLE DRUM FILTERS, AND CHEMICAL STORAGE DRUMS
- 11 SECTION 13215 PIPING
- 12 SECTION 16050 ELECTRICAL

Rocky Flats Environmental Technology Site
OU 7 Passive Seep Collection
and Treatment System
Category

Manual
Section
Earthwork, Rev 1
September 1995
Carpanization
RMRS

SECTION 02200 - EARTHWORK

1. Part 1 General

}

Note In drawings and specifications, "Contractor" refers to RMRS and "Subcontractor" refers to bidder

11 Summary

- 1 1 1 Section includes clearing and grubbing, excavation, trenching, bedding, backfilling, compaction, and grading associated with the sitework and other work required for this project
- 1 1 2 Excavation occurs within wetland area Damage to wetlands shall be minimized by Subcontractor and shall be confined to "Extent of construction" zone as marked on plans

1.2 Related Sections

- 1 2 1 Section 01300 Submittals (see Contract Document)
- 1 2 2 Section 01700 Construction Safety Requirements (see Contract Document)
- 1 2 3 Section 02935 Riprap
- 1 2 4 Section 02970 Drain Rock
- 1 2 5 Section 13215 Piping

13 References

The latest issues of the following publications form a part of this specification

- 1 3 1 ASTM C136, Sieve Analysis of Fine and Coarse Aggregates
- 1 3 2 ASTM D1556, Density of Soil in Place by the Sand-Cone Method
- 1 3 3 ASTM D1557, Moisture-Density Relations of Soils and Soil-Aggregate Mixture Using 10-lb (4 54 kg) Rammer and 18-in (457 mm) Drop
- 1 3 4 ASTM D2487 Classification of Soils for Engineering Purposes

Rocky Flats Environmental Technology Site	Manual	RF/ER-94-00044
OU 7 Passive Seep Collection	Section	Earthwork, Rev 1
and Treatment System	Effective Date	September 1995
Category	Organization	RMRS

- 1 3 5 ASTM D2922, Density of Soil-Aggregate In-Place by Nuclear Method (Shallow Depth)
- 1 3 6 ASTM D3017, Determination of Moisture Content in Soils by Nuclear Method
- 1 3 7 ASTM D4318, Standard Test Method for Liquid Limit, Plastic Limit, and Plasticity Index of Soils
- 1 3 8 ASTM E11, Specification for Wire-Cloth Sieves for Testing Purposes

1 4 Submittals

- 1 4 1 Comply with "Section 01300 Submittals" (see Contract Document)
- 1 4 2 Initial test reports to be submitted by the Subcontractor for approval of the material prior to use, or for imported materials, prior to shipment of the material to the site
 - 1 4 2 1 Granular Material for Pipe Bedding
 - Sand Sieve Analysis

Pipe bedding in trenches shall be a well-graded sand with 100% passing a 4-mesh sieve and 100% retained on a 200-mesh sieve, when tested in accordance with ASTM C136 Sieve sizes shall conform to ASTM E11

- Submit initial test results indicating compliance to these requirements prior to shipment of the material to the site
- Moisture-Density Relationships

The Subcontractor shall submit laboratory test results for the moisture-density relationships for the sand (pipe bedding) and import suitable fill material (if used). These will provide the Contractor with the maximum density and the optimum moisture content for the respective materials to be used in the work.

Pea Gravel

Pea gravel of 3/8-inch diameter may be substituted for sand with approval of Contractor

Rocky Flats Environmental Technology Site	Manual	RF/ER-94-00044
OU 7 Passive Seep Collection	Section	Earthwork, Rev 1
and Treatment System	Effective Date	September 1995
Category	Organization	RMRS

1 4 2 2 Suitable Fill Material

Plasticity Index

At locations where backfill must be placed over piping or under structures, fill material shall be nonexpansive soils (Plasticity Index equal to or less than 12 percent when tested in accordance with ASTM D4318)

- Submit test results for Plasticity Index for this fill material to be used at these locations (at or under structures or paved areas), indicating compliance to these requirements
- Note that this suitable fill material may be imported or material excavated from the site trenching/excavations if it meets the specified requirements
- Moisture-Density Relationships same as 1 4 2 1
- 1 4 3 Proposed excavation, stockpiling, and regrading staging plan describing handling and transport of on-site and off-site materials

2 Part 2 Materials

2 1 Excavated Material

2 1 1 Earth and other materials that can be removed with commercially available excavating equipment. Any rock that cannot be removed as described above or other unsuitable material or unacceptable soil encountered shall be removed and disposed at the existing adjacent landfill.

22 Fill Material

- Fill material shall be imported or available on-site soil borrow free from deleterious materials described below under "Unsuitable Materials." The maximum particle size shall be one-and one-half (1½) inches in any direction. Acceptable soils are those meeting the requirements of ASTM D2487 for SP-SM, SM, SC, or ML. The use of CL or similar materials will require the approval of the Contractor.
- 222 Unsuitable Materials include all soil materials that contain waste debris, roots organic matter, frozen matter, stone or rock with any dimension greater than 6 inches, or other materials that are determined by the Contractor's representative to be unsuitable for

Rocky Flats Environmental Technology Site	Manual	RF/ER-94-00044
OU 7 Passive Seep Collection	Section	Earthwork, Rev 1
and Treatment System	Effective Date	September 1995
Category	Organization	RMRS

stable, compacted backfill purposes Unsuitable material shall be removed and disposed at the adjacent landfill

23 Equipment

- 2 3 1 All equipment and tools used in the performance of the work will be subject to approval by Contractor's Site Safety Division before the work is started and shall be maintained in satisfactory working condition at all times
- 2 3 2 The equipment shall be adequate and shall have the capability of producing the indicated compaction requirements and other quality requirements specified herein

3 Part 3 Execution

3.1 Preparation

- 3 1 1 Verify all lines, limits, and grades shown on the drawings prior to beginning construction activities
- Prior to starting any soil disturbance, excavations, backfilling, or other operations, an approved Integrated Work Control Program (IWCP) package shall be obtained from the Contractor. The IWCP package will include an approved soil disturbance plan that contains the information necessary to guide the safe execution of excavation/soil disturbances at the Rocky Flats Environmental Technology Site.
- 3 1 3 Do not divert, remove, or pump any groundwater or water from any trench, manhole, or ditch without approval from the Contractor All water dewatered from excavation and trenching activities shall be pumped to the OU 7 pond upon approval
- 3 1 4 All streets, roads, grading, structures, utilities, and other improvements not specifically designated to be cleared, removed, stripped, or altered as a part of the work shall be protected from damage throughout the construction period. Any damage caused by the Construction Subcontractor, his employees, agents, or any lower-tiered Subcontractors shall be immediately repaired to original condition at no additional cost to the Contractor.

3 1 5 Traffic Control

Rocky Flats Environmental Technology Site	Manual	RF/ER-94-00044
OU 7 Passive Seep Collection	Section	Earthwork, Rev 1
and Treatment System	Effective Date	September 1995
Category	Organization	RMRS

3 1 5 1 The Construction Subcontractor shall provide all necessary barricades, signs, signals, etc., for the protection of the workers and the public, as established by the Occupational Safety and Health Administration (OSHA) Construction Safety and Health Regulation 29 CFR, Part 1926, Subpart G - Signs, Signals and Barricades, and in Subpart P - Excavations, Trenching and Shoring

3 1 6 Existing Utilities

- 3 1 6 1 Known existing utilities will be indicated in the IWCP and on the drawings. The Construction Subcontractor shall hand excavate within 6 feet (or as directed by the Contractor) of areas where existing utilities are indicated.
- 3 1 6 2 Actual locations of all existing utilities within the excavation area shall be located by the Construction Subcontractor by hand excavation
- 3 1 6 3 After the actual locations and routing of the existing utilities have been found to be accurately determinable through hand excavation, and after approval from the Contractor's construction representative, the Construction Subcontractor may begin excavation using machinery in a manner acceptable to the Contractor
- 3 1 6 4 After excavation by machinery has begun with the approval of the Contractor, the Construction Subcontractor continues to be fully responsible for all utilities that were found through hand excavation and/or that were indicated on the drawings and IWCP excavation permit
- 3 1 6 5 Any existing utility in the IWCP and on the drawing that is damaged by the Construction Subcontractor shall be immediately repaired in a manner acceptable to the Contractor and at no additional cost to the Contractor
- 3 1 6 6 If excavation will be within 10 feet of any existing electrical utility, lockout/tagout procedures are required. The Construction Subcontractor shall provide 48-hour prior notice to the Contractor so that the Contractor can arrange for and perform these lockout/tagout procedures.

Rocky Flats Environmental Technology Site	Manual	RF/ER-94-00044
OU 7 Passive Seep Collection	Section	Earthwork, Rev 1
and Treatment System	Effective Date	September 1995
Category	Organization	RMRS

- 3 1 6 7 Notify the Contractor immediately if any existing utilities that were not indicated are encountered during excavation
- 3 1 6 8 Obtain approval from the Contractor before backfilling existing utilities. Utility warning tape (provided by the Contractor) shall be placed 12 inches above existing utilities.
- 3 1 7 All excavations, trenching, and shoring shall comply with the rules and regulations as established by OSHA Construction Safety and Health Regulations 29 CFR, Part 1926, Subpart P, Excavation, Trenching and Shoring and shall comply with the Rocky Flats Health and Safety Practices (HSP) Manual, Section HSP-12 08 OSHA Pamphlet 2226, Excavation and Trenching Operations, can be used as an additional aid Subcontractor shall comply with OSHA 29 CFR 1910 146, confined space entries, Rocky Flats, H&S Manual Section 6 04
- 3 1 8 In excavations and trenches, proper allowances shall be made for pipe installation, formwork, concrete work, shoring, inspection, and any other work required in the excavation. Bottoms of excavations and trenches shall be level, clean, and clear of loose materials, trash, and debris.
- 3 1 9 Protect bottoms of all excavations from free-standing water and frost. All soils in excavations or where fills will be placed shall be protected from movement or other damage due to frost penetration. Soil backfill, insulation, heat, or other acceptable methods shall be used to protect soils during periods of the year in which frost penetration is possible.
- 3 1 10 Trenching for Underground Utilities

3 1 10 1 General

- 3 1 10 1 1 All trench excavations shall be made by open cut to the lines and grades as shown on the drawings, within the tolerances specified, through whatever material is encountered
- 3 1 10 1 2 Trench excavations shall not advance more than 50 feet ahead of pipe laying and backfilling operations

Rocky Flats Environmental Technology Site	Manual	RF/ER-94-00044
OU 7 Passive Seep Collection	Section	Earthwork, Rev 1
and Treatment System	Effective Date	September 1995
Category	Organization	RMRS

- 3 1 10 1 3 All suitable material generated from excavation and trenching operations shall be used for backfilling as specified herein. Material that is deemed unsuitable for backfill shall be disposed of by the Construction Subcontractor in the adjacent landfill.
- 3 1 10 1 4 At the conclusion of each day's work, all trenches shall be either backfilled, barricaded, or adequately fenced and protected such that injuries to pedestrians, motorists, and wildlife would not be possible
- 3 1 10 1 5 Install Contractor-furnished utility warning tape 12 inches above any existing underground utilities exposed during the work

3 1 10 2 Trench Width

3 1 10 2 1 Trenches shall be excavated to the width necessary to permit the pipe to be laid and jointed properly and the backfill placed as specified

3 1 10 3 Trench Depth

3 1 10 3 1 When the excavation is in firm earth, care shall be taken to avoid excavation below the established grade

3 1 10 4 Trench Bottom

- 3 1 10 4 1 Protect and maintain when suitable natural materials are encountered Remove rock fragments and materials disturbed during excavation or raveled from trench walls
- 3 1 10 4 2 Unstable Trench Conditions When soft or otherwise unstable foundation material is encountered in the bottom of the trench, it shall be removed and replaced with fill material described in this specification. A trench bottom that is wet will not be considered evidence that the trench bottom is unstable.

02200 - 7

Rocky Flats Environmental Technology Site	Manual	RF/ER-94-00044
OU 7 Passive Seep Collection	Section	Earthwork, Rev 1
and Treatment System	Effective Date	September 1995
Category	Organization	RMRS

32 Drainage

- 3 2 1 Excavation and site grading shall be performed in such a manner that the area of the site and the area immediately surrounding the site will be continually and effectively drained by gravity or by temporary pumps
- 3 2 2 Water shall not be permitted to accumulate in the excavation or adjacent to structure foundations
- 323 The excavation shall be drained by methods that will prevent wetting of the foundation bottom, undercutting of footings, or other conditions detrimental to proper construction procedures
- 3 2 4 The excavation shall be kept dry during digging, subgrade preparation, and continually thereafter until the structure to be built or installed is completed to the extent that all footings and foundation walls have been placed and foundation trenches are backfilled and no damage from hydrostatic pressure, flotation, or other causes will result

3 3 Clearing and Grubbing

Note Excavation occurs within wetland area Damage to wetlands shall be minimized by Subcontractor and shall be confined to "Extent of construction" zone as marked on plans

331 Clearing

- 3 3 1 1 Clearing shall consist of satisfactory disposal of vegetation designated for removal, including snags, brush, and rubbish occurring in the areas to be cleared and grubbed for the work
- 3 3 1 2 Roots, brush, and other vegetation in areas to be cleared for the work shall be cut off flush with or below the original ground surface

332 Grubbing

3 3 2 1 Grubbing shall consist of the removal and disposal of brush and matted roots from the areas required to be cleared and grubbed for the work

Rocky Flats Environmental Technology Site	Manual	RF/ER-94-00044
OU 7 Passive Seep Collection	Section	Earthwork, Rev 1
and Treatment System	Effective Date	September 1995
Category	Organization	RMRS

- 3322 Material not suitable for foundation purposes shall be removed to a depth of not less than 18 inches below the original ground surface in areas designated as construction areas under the project, such as areas for buildings and areas to be paved
- 3 3 2 3 Depressions made by grubbing shall be filled with suitable material and compacted to make the surface conform with the required surface elevation for the work
- 3 3 3 Roots, brush, rotten wood, and other refuse from the clearing and grubbing operations shall be disposed of by the Construction Subcontractor in accordance with paragraph entitled "Disposal of Debris and Excess Material"

3 4 Overexcavation

- 3 4 1 All unstable materials encountered below the established elevation of the excavation that will not provide a firm foundation for subsequent work shall be removed and disposed of or placed in the landfill
- 3 4 2 Excavations performed below the depths indicated or required, unless directed by the Contractor, shall be returned to the proper elevation in accordance with the procedure specified herein for backfilling at no additional cost to the Contractor
- 3 4 3 Excavation under concrete vault and steel tank shall be 6 inches below specified bottom of structure or to weathered bedrock, whichever is lower. If weathered bedrock is not encountered 3 feet below specified bottom of structure, excavation may terminate at that elevation upon approval of Contractor.

3 5 Backfilling

- 3 5 1 Concrete vault and steel tank shall be set on a minimum of 6 inches of compacted strutural fill. See Section 3 4 3 above regarding depth of excavation
- 3 5 2 All suitable material removed from excavations shall be used in the backfilling of the excavations prior to bringing in import suitable fill material. No excavated material shall be wasted without approval of the Contractor.

Rocky Flats Environmental Technology Site	Manual	RF/ER-94-00044
OU 7 Passive Seep Collection	Section	Earthwork Rev 1
and Treatment System	Effective Date	September 1995
Category	Organization	RMRS

- 3 5 3 Prior to backfilling, clean excavations of all trash and debris, and compact the trench or excavation subgrade to the requirements indicated below in paragraph entitled "Compaction"
 - 3 5 3 1 The existing grade or subgrade to receive fill shall be scarified to a minimum depth of 6 inches before the fill is started, such that the subgrade will be compacted (and moistened or dried, if necessary) to meet the density/moisture requirements indicated below
- 3 5 4 Backfilling shall not begin until construction below finish grade has been approved, unless otherwise noted herein
- 3 5 5 Fill shall be placed in horizontal layers not to exceed 10-inch compacted thickness and shall have a moisture content as specified herein such that the required degree of compaction may be obtained. Each layer shall be compacted by hand or machine tampers or by other suitable equipment. Compaction and testing requirements shall be in accordance with the requirements indicated below.
- 3 5 6 Backfill around concrete vault and steel tanks shall occur in even lifts around the entire perimeter of the structure
- 3 5 7 If the Construction Subcontractor cannot attain the compaction densities required below using 10-inch-thick compacted lifts, then the Construction Subcontractor shall reduce the required compaction lift thickness to 6 inches. This reduction in lift thickness shall be done at no additional cost to the Contractor.
- 3 5 8 Placing Fill Material
 - 3 5 8 1 Completed fill shall correspond to the proposed grades/elevations
 - Place fill materials in successive layers of loose materials not more than 13 inches deep to achieve the specified 10-inch maximum compacted lift thickness. Note that if the compacted lift thickness must be reduced as described above, the loose layer thickness shall not exceed 8 inches.

9/20/95

3 5 8 3 Uniformly spread each layer using approved devices and machinery

Rocky Flats Environmental Technology Site	Manual	RF/ER-94-00044
OU 7 Passive Seep Collection	Section	Earthwork, Rev 1
and Treatment System	Effective Date	September 1995
Category	Organization	RMRS

- 3 5 8 4 Fill materials shall be moistened (or dried) and thoroughly mixed as necessary to attain the moisture content indicated in paragraph entitled "Compaction"
- 3 5 8 5 Compact each layer of fill thoroughly using the appropriate compaction equipment Compact each layer to the requirements indicated below
- 3 5 8 6 Heavy equipment for spreading and compacting backfill shall not be operated closer to concrete vault or steel tank than a distance equal to the height of backfill above the bottom of the structure, the area remaining shall be compacted by power-driven hand/walk-behind tampers, compactors, or roller suitable for the material being compacted
- 3 5 8 7 Backfill shall be placed carefully around pipes to avoid damage to pipes

3 6 Compaction

- 3 6 1 All soil materials, including sand bedding and suitable fill material, shall be compacted and tested to the requirements indicated herein
- 3 6 2 Hydraulic compactors attached to the backhoe boom shall not be used to compact the pipe bedding, since this could damage the pipe. Vibratory plate compactors or other suitable compaction equipment shall be used for the pipe bedding.
- 3 6 3 Except as otherwise specified, moisture/density relationships shall be as determined by American Society for Testing and Materials (ASTM D1557) and the degree of field compaction shall be controlled with ASTM D1556 or ASTM D2922 and moisture content shall be controlled using ASTM D3017. All tests will be performed by the Subcontractor or the Subontractor's designated representative.
 - 3 6 3 1 Compaction of 90% of maximum density will be required for pipe bedding. If pea gravel is used, quality control testing would not be required.
 - 3 6 3 2 Compaction of 90% of maximum density will be required under all structures, except as noted above for the pipe bedding
 - 3 6 3 3 A minimum of one field compaction density/moisture test shall be required under each of the two tanks for each lift

02200 - 11

Rocky Flats Environmental Technology Site OU 7 Passive Seep Collection Section Earthwork, Rev 1 and Treatment System Effective Date Organization RMRS

3 6 4 Moisture Content

- 3 6 4 1 In areas where backfill is placed, the material, except as noted below, shall be moistened (or dried, if too wet) and thoroughly mixed to attain a moisture content between 2% below and 4% above optimum moisture when compacted
 - 3 6 4 1 1 The sand used for pipe bedding shall be exempt from these moisture content range requirements, but should have a moisture content necessary to attain the indicated compaction density requirements
- 3 6 5 The Construction Subcontractor shall submit laboratory test results for the moisture/density relationships for the sand (pipe bedding), and import suitable fill material (if used) These will provide the maximum density and the optimum moisture content for the respective materials to be used in the work
- 3 6 6 The Contractor will pay for any test for soil compaction or moisture content that meets the requirements for the specifications. The Construction Subcontractor shall pay for any soil tests that indicate the soil compaction and/or moisture content does not meet requirements of the specifications.

37 Reconditioning of Subgrades

- 3 7 1 Approved compacted subgrades that are disturbed by the Construction Subcontractor's subsequent operations or adverse weather shall be scarified and compacted as specified herein to the required density and moisture limits prior to further construction thereon
- 3 7 2 Any rework due to the above actions shall be performed at no additional cost to the Contractor

3 8 Disposal of Debris and Excess Material

- 3 8 1 Rubble, debris, and material from trenching operations that is not suitable for fill shall be disposed of in the existing adjacent landfill
- 3 8 2 Excess material from excavation, unsuitable for or not required for backfilling, shall be wasted, spread, and leveled or graded as directed by the Contractor

Rocky Flats Environmental Technology Site OU 7 Passive Seep Collection and Treatment System

Manual Section Effective Date Organization RF/ER-94-00044 Riprap, Rev 1 September 1995 RMRS

SECTION 02935 - RIPRAP

1 Part 1 General

1 1 Description

Category

The work of this section consists of furnishing and placing stone riprap for the surface water diversion berm around the seep collection system

2 Part 2 Materials

21 Hand Laid Riprap

Shall be well-graded angular quarry stones, sound and hard, of durability to withstand exposure to water and weathering

22 Riprap Size

The design stone size is the d_{50} median stone diameter, which is defined as the stone size that 50% of the mixture by weight is larger than. The median stone diameter, d_{50} , shall equal 4 inches unless otherwise specified on the plans. Diameter of the largest stone shall be 1.5 times the design stone, d_{50}

23 Riprap Thickness

Riprap layer shall be a minimum of 1.5 times the d_{so} stone size

3 Part 3 Execution

3 1 Riprap Placement

Rocks shall be laid by hand Placing of rocks by dumping will not be permitted

Local surface irregularities of the slope protection shall not vary from the planned slope by more than one foot measured at right angles to the slope

Rocky Flats Environmental Technology Site	Manual	RF/ER-94-00044
OU 7 Passive Seep Collection	Section	Drain Rock, Rev 1
and Treatment System	Effective Date	September 1995
Category	Organization	RMRS

SECTION 02970 - DRAIN ROCK, PVC LINER, AND FILTER FABRIC

1. Part 1 General

1 1 Description

The work under this section consists of furnishing and installing drain rock, PVC liner and filter fabric for the seep collection system

1 2 Submittals

In accordance with Section 01300 (see Contract Documents)

2 Part 2 Material

21 Drain Rock

- A Source The source of drain rock shall be from an approved off-site borrow area
- B Size and Permeability The drain rock shall be subangular to rounded washed gravel meeting the following gradation requirements

Sieve Size	% Passing	
1 in	100	
3/4 IN	80 - 100	
3/8 in	10 - 30	
No 4	0 - 4	
No 40	0 - 1	

C Testing Test frequency of drain rock shall conform to the following

Particle Size ASTM D 422 1 test for the drain rock used at the seep collection facility

Rocky Flats Environmental Technology Site
OU 7 Passive Seep Collection
and Treatment System
Category

Manual
Section
Section
Effective Date
Organization

RF/ER-94-00044
September 1995
September 1995

22 PVC Liner

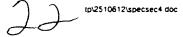
PVC liner shall be 40 mil thick PVC pipe boot shall be job constructed as described on the plans using 40 mil PVC and PVC adhesive designed for flexible liner or alternatively may be manufactured by vendor

23 Filter Fabric

Filter fabric shall be polypropylene nonwoven needle-punched fabric, 8 ounce weight

3 Part 3 Execution

3 1 Drain Rock Placement


- A The drain rock shall be placed as shown on the drawings
- B Dumping of material onto drainage pipe installations will not be permitted. Spreading of material shall be done with care to minimize folds in the liner and to ensure that damage to drain pipe will not occur.
- C Drain rock materials may be placed in one continuous lift unless directed otherwise by the Contractor No compaction is required for the drain rock layer

3.2 PVC Liner Placement

PVC liner shall be installed as shown on the plans and in accordance with the manufacturer's instructions. Seams shall be made with PVC adhesive for flexible PVC liner.

33 Filter Fabric

Filter fabric shall be installed as shown on the plans and in accordance with manufacturer's instructions

Rocky Flats Environmental Technology Site Manual RF/ER-94-00044
OU 7 Passive Seep Collection and Section Concrete Formwork, Rev 1
Treatment System Effective Date September 1995
Category Organization RMRS

SECTION 03100 - CONCRETE FORMWORK

1 Part 1 General

1 1 Section Includes

- 1 1 1 Formwork for cast-in-place concrete, with shoring, bracing, and anchorage
- 1 1 2 Openings for other work
- 1 1 3 Form accessories
- 114 Form stripping

12 References

- 1 2 1 ACI 347 Recommended Practice for Concrete Formwork
- 122 PS-1 Construction and Industrial Plywood
- 1 2 3 ACI 301 Structural Concrete for Buildings

1 3 Design Requirements

- 1 3 1 Design, engineer, and construct formwork, shoring, and bracing to conform to ACI code requirements, resultant concrete to conform to required shape, line, and dimension
- 1 4 Quality Assurance
 - 1 4 1 Perform work in accordance with ACI 347
- 1 5 Regulatory Requirements
 - 151 Conform to applicable code for design, fabrication, erection, and removal of formwork
- 1 6 Coordination
 - 1 6 1 Coordinate this section with other sections of work that require attachment of components to formwork

Rocky Flats Environmental Technology Site	Manual	RF/ER-94-00044
OU 7 Passive Seep Collection and	Section	Concrete Formwork Rev 1
Treatment System	Effective Date	September 1995
Category	Organization	RMRS

1 6 2 If formwork is placed after reinforcement resulting in insufficient concrete cover over reinforcement, request instructions from Contractor before proceeding

2 Part 2 Products

2 1 Wood Form Materials

2 1 1 Form Materials At the discretion of the Contractor

2.2 Prefabricated Forms

- 2 2 1 Preformed Steel Forms Minimum 16 gage matched, tight fitting, stiffened to support weight of concrete without deflection, detrimental to tolerances and appearance of finished surfaces
- 2 2 2 Glass Fiber Fabric Reinforced Plastic Forms Matched, tight fitting, stiffened to support weight of concrete without deflection detrimental to tolerances and appearance of finished concrete surfaces

23 Formwork Accessories

- 2 3 1 Form Release Agent Colorless mineral oil that will not stain concrete, absorb moisture, or impair natural bonding or color characteristics of coating intended for use on concrete
- 2 3 2 Corners Chamfered, wood strip type, ¾-by-¾-inch size, maximum possible lengths
- 2 3 3 Nails, Spikes, Lag Bolts, Through Bolts, Anchorages Sized as required, of sufficient strength and character to maintain formwork in place while placing concrete

3 Part 3 Execution

3 1 Examination

ip 2510612\specsec5 doc

3 1 1 Verify lines, levels, and centers before proceeding with formwork. Ensure that dimensions agree with drawings.

03100 - 2

Rocky Flats Environmental Technology Site	Manual	RF/ER-94-00044
OU 7 Passive Seep Collection and	Section	Concrete Formwork, Rev 1
Treatment System	Effective Date	September 1995
Category	Organization	RMRS

32 Earth Forms

3 2 1 Earth forms are not permitted

33 Erection - Formwork

- 3 3 1 Erect formwork, shoring, and bracing to achieve design requirements, in accordance with requirements of ACI 301
- 3 3 2 Provide bracing to ensure stability of formwork Shore or strengthen formwork subject to overstressing by construction loads
- 3 3 3 Arrange and assemble formwork to permit dismantling and stripping Do not damage concrete during stripping Permit removal of remaining principal shores
- 3 3 4 Align joints and make watertight. Keep form joints to a minimum
- 3 3 5 Obtain approval before framing openings in structural members that are not indicated on drawings
- 3 3 6 Provide chamfer strips on external corners of foundation walls

3 4 Application - Form Release Agent

- 3 4 1 Apply form release agent on formwork in accordance with manufacturer's recommendations
- 3 4 2 Apply prior to placement of reinforcing steel, anchoring devices, and embedded items
- 3 4 3 Do not apply form release agent where concrete surfaces will receive special finishes that are affected by agent. Soak inside surfaces of untreated forms with clean water. Keep surfaces coated prior to placement of concrete.
- 3 5 Inserts, Embedded Parts, and Openings
 - 3 5 1 Provide formed openings where required for items to be embedded in or passing through concrete work

Rocky Flats Environmental Technology Site	Manual	RF/ER-94-00044
OU 7 Passive Seep Collection and	Section	Concrete Formwork, Rev 1
Treatment System	Effective Date	September 1995
Category	Organization	RMRS

- 3 5 2 Locate and set in place items that will be cast directly into concrete
- 3 5 3 Coordinate work of other sections in forming and placing openings, slots, reglets, recesses, chases, sleeves, bolts, anchors, and other inserts
- 3 5 4 Install accessories in accordance with manufacturer's instructions, straight, level, and plumb Ensure items are not disturbed during concrete placement
- 3 5 5 Provide temporary ports or openings in formwork where required to facilitate cleaning and inspection. Locate openings at bottom of forms to allow flushing water to drain
- 3 5 6 Close temporary openings with tight fitting panels, flush with inside face of forms, and neatly fitted so joints will not be apparent in exposed concrete surfaces

3 6 Form Cleaning

- 3 6 1 Clean and remove foreign matter within forms as erection proceeds
- 3 6 2 Clean formed cavities of debris prior to placing concrete
- 3 6 3 Flush with water or use compressed air to remove remaining foreign matter. Ensure that water and debris drain to exterior through clean-out ports
- 3 6 4 During cold weather, remove ice and snow from within forms. Do not use de-icing salts or water to clean out forms, unless formwork and concrete construction proceed within heat enclosure. Use compressed air or other means to remove foreign matter.

37 Formwork Tolerances

3 7 1 Construct formwork to maintain tolerances required by ACI 301

3 8 Field Quality Control

- Inspect erected formwork, shoring, and bracing to ensure that work is in accordance with formwork design, and that supports, fastenings, wedges, ties, and items are secure
- 3 8 2 Do not reuse wood formwork more than four times for concrete surfaces to be exposed to view. Do not patch formwork

Rocky Flats Environmental Technology Site	Manual	RF/ER-94-00044
OU 7 Passive Seep Collection and	Section	Concrete Formwork, Rev 1
Treatment System	Effective Date	September 1995
Category	Organization	RMRS

39 Form Removal

- 3 9 1 Do not remove forms or bracing until concrete has gained sufficient strength to carry its own weight and imposed loads
- 3 9 2 Loosen forms carefully Do not wedge pry bars, hammers, or tools against finish concrete surfaces scheduled for exposure to view
- 3 9 3 Store removed forms in manner that surfaces to be in contact with fresh concrete will not be damaged. Discard damaged forms

ź

Rocky Flats Environmental Technology Site	Manual	RF/ER-94-00044
OU 7 Passive Seep Collection and	Section	Cast-In-Place Concrete, Rev 1
Treatment System	Effective Date	September 1995
Category	Organization	RMRS

SECTION 03300 - CAST-IN-PLACE CONCRETE

1 Part 1 General

1 1 Section Includes

- 1 1 1 Floors and slabs on grade
- 1 1 2 Control and expansion and contraction joint devices associated with concrete work, including joint sealants
- 113 Equipment pads

12 Reference's

- 1 2 1 ACI 301 Structural Concrete for Buildings
- 1 2 2 ACI 302 Guide for Concrete Floor and Slab Construction
- 1 2 3 ACI 304 Recommended Practice for Measuring, Mixing, Transporting, and Placing Concrete
- 1 2 4 ACI 305R Hot Weather Concreting
- 1 2 5 ACI 306R Cold Weather Concreting
- 1 2 6 ACI 308 Standard Practice for Curing Concrete
- 1 2 7 ACI 318 Building Code Requirements for Reinforced Concrete
- 1 2 8 ANSI/ASTM D994 Preformed Expansion Joint Filler for Concrete (Bituminous Type)
- 1 2 9 ANSI/ASTM D1190 Concrete Joint Sealer Hot-Poured Elastic Type
- 1 2 10 ANSI/ASTM D1751 Preformed Expansion Joint Fillers for Concrete Paving and Structural Construction (Nonextruding and Resilient Bituminous Types)

tp\2510612\specsec6 doc

03300 - 1

Rocky Flats Environmental Technology Site	Manual	RF/ER-94-00044
OU 7 Passive Seep Collection and	Section	Cast-In-Place Concrete, Rev 1
Treatment System	Effective Date	September 1995
Category	Organization	RMRS

- 1 2 11 ANSI/ASTM D1752 Preformed Sponge Rubber and Cork Expansion Joint Fillers for Concrete Paving and Structural Construction
- 1 2 12 ASTM C33 Concrete Aggregates
- 1 2 13 ASTM C94 Ready-Mixed Concrete
- 1 2 14 ASTM C150 Portland Cement
- 1 2 15 ASTM C260 Air Entraining Admixtures for Concrete
- 1 2 16 ASTM C494 Chemicals Admixtures for Concrete

13 Submittals

- 1 3 1 Submit under provisions of Section 01300 (See Contract Documents)
- 132 Product Data Provide data on joint devices, attachment accessories, admixtures
- 1 3 3 Samples Submit two-inch-long samples of expansion/contraction joint and control joint
- 1 3 4 Manufacturer's Installation Instructions Indicate installation procedures and interface required with adjacent work

1 4 Project Record Documents

- 1 4 1 Submit under provisions of Section 01300
- 1 4 2 Accurately record actual locations of embedded utilities and components that are concealed from view

1 5 Quality Assurance

tp\2510612\specsec6 doc

- 1 5 1 Perform work in accordance with ACI 301
- 1 5 2 Conform to ACI 305R when concreting during hot weather
- 1 5 3 Conform to ACI 306R when concreting during cold weather

03300 - 2

Rocky Flats Environmental Technology Site	Manual	RF/ER-94-00044
OU 7 Passive Seep Collection and	Section	Cast-In-Place Concrete, Rev 1
Treatment System	Effective Date	September 1995
Category	Organization	RMRS

1 6 Coordination

1 6 1 Coordinate the placement of joint devices with erection of concrete formwork and placement of form accessories

2 Part 2 Products

- 2 1 Concrete Materials
 - 2 1 1 Cement Rocky Flats, Type II modified or Type V
 - 2 1 2 Fine and Coarse Aggregates ASTM C33
 - 2 1 3 Water Clean and not detrimental to concrete

22 Admixtures

- 2 2 1 Air Entrainment ASTM C260
- 222 Chemical ASTM C494, Type A Water Reducing, Type B Retarding, Type C Accelerating, Type D Water Reducing and Retarding, Type E Water Reducing and Accelerating

23 Accessories

tp\2510612\specsec6 doc

2 3 1 Non-Shrink Grout Premixed compound consisting of non-metallic aggregate, cement, water reducing and plasticizing agents, capable of developing minimum compressive strength of 2,400 psi in 48 hours and 7,000 psi in 28 days

2 4 Joint Devices and Filler Materials

- 2 4 1 Joint Filler ASTM D1751, ASTM D994, Asphalt impregnated fiberboard or felt, ¼-inch thick, tongue and groove profile
- 2 4 2 Construction Joint Devices Integral galvanized steel 1½-inch thick, formed to tongue and groove profile, with removable top strip exposing sealant trough, knockout holes spaced at 6 inches, ribbed steel spikes with tongue to fit top screed edge

Rocky Flats Environmental Technology Site	Manual	RF/ER-94-00044
OU 7 Passive Seep Collection and	Section	Cast-In-Place Concrete, Rev 1
Treatment System	Effective Date	September 1995
Category	Organization	RMRS

2 4 3 Sealant and Primer Polyurethane type

25 Concrete Mix

- 2 5 1 Mix concrete in accordance with ACI 304 Deliver concrete in accordance with ASTM C94
- 2 5 2 Select proportions for normal weight concrete in accordance with ACI 301 Method 1
- 2 5 3 Provide concrete to the following criteria
 - 2 5 3 1 Compressive Strength (28 days) 3,000 psi for slab on grade
 - 2532 Slump 1 to 3 inches
 - 2533 Maximum Water/Cement Ratio 05
 - 2534 Entrained Air $5\% \pm 1\%$
- 2 5 4 Use accelerating admixtures in cold weather only when approved by Contractor Use of admixtures will not relax cold weather placement requirements
- 2 5 5 Use calcium chloride only when approved by Contractor
- 2.5.6 Use set retarding admixtures during hot weather only when approved by Contractor
- 2.5.7 Add air entraining agent to normal weight concrete mix for work exposed to exterior

3 Part 3 Execution

3 1 Examination

- 3 1 1 Verify requirements for concrete cover over reinforcement
- 3 1 2 Verify that anchors, reinforcement, and other items to be cast into concrete are accurately placed, positioned securely, and will not cause hardship in placing concrete

Rocky Flats Environmental Technology Site	Manual	RF/ER-94-00044
OU 7 Passive Seep Collection and	Section	Cast-In-Place Concrete Rev 1
Treatment System	Effective Date	September 1995
Category	Organization	RMRS

32 Preparation

- 3 2 1 Prepare previously placed concrete by cleaning with steel brush and applying bonding agent in accordance with manufacturer's instructions
- 3 2 2 In locations where new concrete is dowelled to existing work, drill holes in existing concrete, insert steel dowels, and pack solid with non-shrink grout

3 3 Placing Concrete

- 3 3 1 Place concrete in accordance with ACI 304, ACI 301, and ACI 318
- 3 3 2 Place concrete in forms within 90 minutes of beginning mixing
- 3 3 3 Notify Contractor minimum 24 hours prior to commencement of operations
- 3 3 4 Ensure reinforcement, inserts, embedded parts, formed joint fillers, and joint devices are not disturbed during concrete placement
- 3 3 5 Install joint fillers, in accordance with manufacturer's instructions
- 3 3 6 Separate slabs on grade from vertical surfaces with ½ inch thick joint filler
- 3 3 7 Extent joint filler from bottom of slab to within ½ inch of finished slab surface
- 3 3 8 Install joint devices in accordance with manufacturer's instructions
- 3 3 9 Install construction joint device in coordination with floor slab pattern placement sequence. Set top to required elevations. Secure to resist movement by wet concrete
- 3 3 10 Install joint device anchors Maintain correct position to allow joint cover flush with floor and wall finish
- 3 3 11 Install joint covers in longest practical length when adjacent construction activity is complete
- 3 3 12 Maintain records of concrete placement. Record date location quantity air temperature and test samples taken

tp\2510612\specsec6 doc

03300 5

Rocky Flats Environmental Technology Site	Manual	RF/ER-94-00044
OU 7 Passive Seep Collection and	Section	Cast-In-Place Concrete, Rev 1
Treatment System	Effective Date	September 1995
Category	Organization	RMRS

- 3 3 13 Place concrete continuously between predetermined expansion, control, and construction joints
- 3 3 14 Do not interrupt successive placement, do not permit cold joints to occur
- 3 3 15 Place floor slabs in checkerboard pattern indicated
- 3 3 16 Saw cut joints within 24 hours after placing Using 3/16-inch-thick blade, cut into ¼ depth of slab thickness
- 3 3 17 Screed slabs on grade level, maintaining surface flatness of maximum ¼ inch in 10 feet

3 4 Concrete Finishing

- 3 4 1 Provide formed concrete surfaces to be left exposed with smooth rubbed finish
- 3 4 2 Steel trowel all floor surfaces
- 3 4 3 In areas with floor drains, maintain floor elevation at walls, pitch surfaces uniformly to drains as indicated on drawings

3 5 Curing and Protection

- 3 5 1 Immediately after placement, protect concrete from premature drying, excessively hot or cold temperatures, and mechanical injury
- 3 5 2 Maintain concrete with minimal moisture loss at relatively constant temperature for period necessary for hydration of cement and hardening of concrete
- 3 5 3 Ponding Maintain 100 percent coverage of water over floor slab areas continuously for 4 days
- 3 5 4 Spraying Spray water over floor slab areas and maintain wet for 7 days

3 6 Field Quality Control

Ip\2510612\specsec6 doc

3 6 1 Field inspection and testing will be performed in accordance with ACI 301 and under provisions of Section 01400

Rocky Flats Environmental Technology Site	Manual	RF/ER-94-00044
OU 7 Passive Seep Collection and	Section	Cast-In-Place Concrete, Rev 1
Treatment System	Effective Date	September 1995
Category	Organization	RMRS

- 3 6 2 Provide free access to work and cooperate with appointed firm
- 3 6 3 Submit proposed mix design of each class of concrete to inspection and testing firm for review prior to commencement of work
- 3 6 4 Tests of cement and aggregates may be performed to ensure conformance with specified requirements
- 3 6 5 Three concrete test cylinders will be taken for every 75 or less cu yds of each class of concrete placed
- 3 6 6 One additional test cylinder will be taken during cold weather concreting, cured on job site under same conditions a concrete it represents
- 3 6 7 One slump test will be taken for each set of test cylinders taken. In addition, slump tests shall be taken if the consistency of the concrete appears to vary

37 Patching

- 3.7.1 Allow Contractor to inspect concrete surfaces immediately upon removal of forms
- 3 7 2 Excessive honeycomb or embedded debris in concrete is not acceptable. Notify Contractor upon discovery
- 3 7 3 Patch imperfections in accordance with ACI 301

3 8 Defective Concrete

tp\2510612\specsec6 doc

- 3 8 1 Defective Concrete Concrete not conforming to required lines, details, dimensions, tolerances, or specified requirements
- 3 8 2 Repair or replacement of defective concrete will be determined by the Contractor
- 3 8 3 Do not patch, fill, touch-up, repair, or replace exposed concrete except upon express direction of Contractor for each individual area

Rocky Flats Environmental Technology Site	Manual	RF/ER-94-00044
OU 7 Passive Seep Collection	Section	Precast Concrete, Rev 1
and Treatment System	Effective Date	September 1995
Category	Organization	RMRS

SECTION 03400 - PRECAST CONCRETE

1 Part 1 General

1 1 1 Precast Concrete Vault and Precast Concrete Vault Joint

12 References

- 1 2 1 ASTM A615, Specification for Deformed and Plain Billet-Steel Bars for Concrete Reinforcement
- 1 2 2 ASTM C33, Concrete Aggregates
- 1 2 3 ASTM C39, Test Method for Compressive Strength of Cylindrical Concrete Specimens
- 1 2 4 ASTM C136, Method for Sieve Analysis for Fine and Coarse Aggregates
- 1 2 5 ASTM C143, Test Method for Sump of Portland Cement Concrete
- 1 2 6 ASTM C150, Specification for Portland Cement
- 1 2 7 ASTM C192, Method of Making and Curing Concrete Test Specimens in the Laboratory
- 1 2 8 ASTM C231, Test Method of Air Content of Freshly Mixed Concrete by the Pressure Method
- 1 2 9 ASTM C260, Specification for Air Entraining Admixtures for Concrete
- 1 2 10 ASTM C494, Specification for Chemicals Admixtures for Concrete
- 1 2 11 ASTM C857, Recommended Practice for Minimum Structural Design Loading for Underground Precast Concrete Utility Structures
- 1 2 12 ASTM C858, Specification for Underground Precast Concrete Utility Structures
- 1 2 13 ASTM 318-89, Specification for Design of Concrete using Ultimate Strength Methods

tp-2510612\specsec7 doc

Rocky Flats Environmental Technology Site	Manual	RF/ER-94-00044
OU 7 Passive Seep Collection	Section	Precast Concrete, Rev 1
and Treatment System	Effective Date	September 1995
Category	Organization	RMRS

1 3 Submittals

- 1 3 1 Manufacturer shall submit shop drawings and receive Contractor approval prior to manufacture of tank
- 1 3 2 Manufacturer shall coordinate the number, size, and location of all penetrations during the submittal process
- 1 3 3 Submit under provisions of Section 01300 (see Contract Documents)
- 1 3 4 Product Data Provide data on joint devices and admixtures
- 1 3 5 Samples Submit two inch long samples of joint material
- 1 3 6 Manufacturer's Installation Instructions Indicate installation procedures and interface required with adjacent work

1 4 Project Record Documents

1 4 1 Submit under provisions of Section 01300 (see Contract Documents)

1 5 Quality Assurance

- 1 5 1 Precast concrete to be manufactured in accordance with ASTM C858
- 1 5 2 Precast concrete components to be installed in accordance with Manufacturer's Installation Instructions

2 Part 2 Products

tp\2510612\specsec7 doc

- 2.1 Loadings Used for Structural Design of Precast Concrete
 - 2 1 1 Soil Compacted Dry Unit Weight 105 pcf
 - 2 1 2 Equivalent Fluid Pressure (active soil pressure) 52 pcf
 - 2 1 3 Maximum Surcharge Loading 100 psf
 - 2 1 4 Soil Cover minimum = 0 ft maximum = 2 ft

Rocky Flats Environmental Technology Site	Manual	RF/ER-94-00044
OU 7 Passive Seep Collection	Section	Precast Concrete, Rev 1
and Treatment System	Effective Date	September 1995
Category	Organization	RMRS

- 2.2 Concrete Materials
 - 2 2 1 Portland Cement ASTM C150 Type II modified or Type V
 - 2 2 2 Fine and Coarse Aggregates ASTM C33
 - 223 Water Clean and not detrimental to concrete
- 23 Admixtures
 - 2 3 1 Air Entrainment ASTM C260
 - 232 Chemical ASTM C494, Type A Water Reducing, Type B Retarding, Type C Accelerating, Type D Water Reducing and Retarding, Type E Water Reducing and Accelerating
- 24 Reinforcement
 - 2 4 1 Rebar ASTM A615 grade 60
- 25 Concrete Mix
 - 2 5 1 Provide concrete to the following criteria
 - 2 5 1 1 Compressive Strength (28 days) 4,500 psi
 - 2512 Slump 1 to 3 inches
 - 2513 Maximum Water/Cement Ratio 05
 - 2514 Entrained Air: 5% ± 1%
 - 2 5 2 Admixtures will include air-entraining agent, water-reducing agent, and accelerator
- 26 Joint Materials
 - 2 6 1 Joint Gasket Conseal CS-102 or equivalent

Rocky Flats Environmental Technology Site	Manual	RF/ER-94-00044
OU 7 Passive Seep Collection	Section	Precast Concrete Rev 1
and Treatment System	Effective Date	September 1995
Category	Organization	RMRS

27 Accessones

- 2 7 1 Grade rings shall be precast concrete
- 272 Manhole ring and cover shall be cast-iron
- 273 Penetrations shall be sealed with Link-Seal gaskets, Model C, manufactured by Thunderline Corporation, or approved equal

3. Part 3 Execution

- 3.1 Preparation
 - 3 1 1 Prepare excavation in accordance with Section 02200, Earthwork
- 3.2 Installation of Precast Concrete
 - 3 2 1 Install precast concrete in accordance with manufacturer's instructions
 - 3 2 2 Install joint gasket in accordance with manufacturer's instructions
 - 3 2 3 Install precast grade rings and watertight ring and cover in accordance with manufacturer's instructions
- 3 3 Field Quality Control
 - 3 3 1 Contractor or Contractor's representative will be notified of placement of precast concrete structure 24 hours in advance
- 3 4 Patching
 - 3 4 1 Excessive honeycomb or embedded debris in concrete is not acceptable. Notify Contractor upon discovery (before installation)
 - 3 4 2 Patch imperfections in accordance with ACI 301 or require replacement of precast concrete

03400 - 4

Rocky Flats Environmental Technology Site	Manual	RF/ER-94-00044
OU 7 Passive Seep Collection	Section	Precast Concrete Rev 1
and Treatment System	Effective Date	September 1995
Category	Organization	RMRS

3 5 Defective Concrete

,

- 3 5 1 Defective Concrete Concrete not conforming to required lines, details, dimensions, tolerances, or specified requirements
- 3 5 2 Repair or replacement of defective concrete will be determined by the Contractor
- 3 5 3 Do not patch, fill, touch-up, repair, or replace exposed concrete except upon express direction of Contractor for each area

Rocky Flats Environmental Technology Site	Manual	RF/ER-94-00044
OU 7 Passive Seep Collection and	Section	Metal Fabrications, Rev 1
Treatment System	Effective Date	September 1995
Category	Organization	RMRS

SECTION 05500 - METAL FABRICATIONS

1	Part 1	General

1 1 Section Includes

1 1 1 Fabricated ferrous metal items

12 References

- 1 2 1 ASTM A36 Structural Steel
- 1 2 2 ASTM A53 Hot-Dipped, Zinc-Coated Welded and Seamless Steel Pipe
- 123 ASTM A123 Zinc (Hot-Galvanized) Coatings on Products Fabricated from Rolled, Pressed and Forged Steel Shapes, Plates, Bars, and Strip
- 1 2 4 ASTM A153 Zinc Coating (Hot-Dip) on Iron and Steel Hardware
- 1 2 5 ASTM A283 Carbon Steel Plates, Shapes, and Bars
- 1 2 6 ASTM A307 Carbon Steel Externally Threaded Standard Fasteners
- 1 2 7 ASTM A386 Zinc-Coating (Hot-Dip) on Assembled Steel Products
- 1 2 8 AWS A2 0 Standard Welding Symbols
- 129 AWS D11-Structural Welding Code
- 1 2 10 SSPC Steel Structures Painting Council
- 1 2 11 ASTM A-603 Wine Rope

13 Submittals

- 1 3 1 Submit under provisions of Section 01300 (See Contract Document)
- 1 3 2 Submit welder qualifications

Rocky Flats Environmental Technology Site	Manual	RF/ER-94-00044
OU 7 Passive Seep Collection and	Section	Metal Fabrications Rev 1
Treatment System	Effective Date	September 1995
Category	Organization	RMRS

- 133 Shop Drawings Indicate profiles, sizes, connection attachments, reinforcing, anchorage, size and type of fasteners, and accessories Include erection drawings, elevations, and details
- 1 3 4 Indicate welded connections using standard AWS A2 0 welding symbols Indicate net weld lengths
- 1 3 5 Submit qualified weld procedures
- 1 3 6 Submit qualified weld tests and inspection reports
- 1 4 Field Measurement's
 - 1 4 1 Verify that field measurements are as indicated on shop drawings
- 1 5 Quality Assurance
 - 1 5 1 Provide welder qualifications and perform welding, tests, and inspections in accordance with AWS structural welding code, AWS D1 1, Latest Edition
- 2 Part 2 Products
- 2.1 Materials
 - 2 1 1 Steel Sections ASTM A36
 - 2 1 2 Pipe ASTM A53, Grade B Schedule 40
 - 2 1 3 Bolts, Nuts, and Washers ASTM A307
 - 2 1 4 Welding Materials AWS D1 1, type required for materials being welded
 - 2 1 5 Shop and Touch-Up Primer SSPC 15, Type 1, red oxide
 - 2 1 6 Steel Wire Rope, Galvanized
- 22 Fabrication
 - 2 2 1 Fit and shop assemble in largest practical sections for delivery to site

Rocky Flats Environmental Technology Site	Manual	RF/ER-94-00044
OU 7 Passive Seep Collection and	Section	Metal Fabrications, Rev 1
Treatment System	Effective Date	September 1995
Category	Organization	RMRS

- 222 Fabricate items with joints tightly fitted and secured
- 223 Continuously seal joined members by continuous welds
- 2 2 4 Grind exposed joints flush and smooth with adjacent finish surface. Make exposed joints butt tight, flush, and hairline. Ease exposed edges to small uniform radius.
- 225 Exposed Mechanical Fastenings Flush countersunk screws or bolts, unobtrusively located, consistent with design of component, except where specifically noted otherwise
- 226 Supply components required for anchorage of fabrications Fabricate anchors and related components of same material and finish as fabrication, except where specifically noted otherwise

23 Finishes

- 2 3 1 Prepare surfaces to be primed in accordance with SSPC SP2
- 2 3 2 Do not prime surfaces in direct contact with concrete or where field welding is required
- 233 Prime paint items with one coat

3 Part 3 Execution

- 31 Examination
 - 3 1 1 Verify that field conditions are acceptable and are ready to receive work
 - 3 1 2 Beginning of installation means erector accepts existing conditions
- 32 Preparation

tp\2510612\specsec8 doc

- 3 2 1 Clean and strip primed steel items to bare metal where site welding is required
- 3 2 2 Supply items required to be cast into concrete with setting templates, to appropriate sections

Rocky Flats Environmental Technology Site	Manual	RF/ER-94-00044
OU 7 Passive Seep Collection and	Section ⁻	Metal Fabrications, Rev 1
Treatment System	Effective Date	September 1995
Category	Organization	RMRS

3 3 Installation

- 3 3 1 Install items plumb and level, accurately fitted, free from distortion or defects
- 3 3 2 Allow for erection loads and for sufficient temporary bracing to maintain true alignment until completion of erection and installation of permanent attachments
- 3 3 3 Field weld components indicated on drawings
- 3 3 4 Perform field welding in accordance with AWS D1 1
- 3 3 5 Obtain Contractor's approval prior to site cutting or making adjustments not scheduled
- 3 3 6 After erection, prime welds, abrasions, and surfaces not shop primed, except surfaces to be in contact with concrete

3 4 Erection Tolerances

- 3 4 1 Maximum Variation From Plumb 1/4 inch non-cumulative
- 3 4 2 Maximum Offset From True Alignment 1/4 inch

Rocky Flats Environmental Technology Site Manual RF/ER-94-00044
OU 7 Passive Seep Collection and Section Painting, Rev 1
Treatment System Effective Date September 1995
Category Organization RMRS

SECTION 09900 - PAINTING

1 Part 1 General

- 1 1 Related Work Specified Elsewhere
 - 1 1 1 Section 05500, Structural and Miscellaneous Steel
- 1 2 Quality Assurance
 - 1 2 1 Include on label of containers
 - Manufacturer's name
 - Type of paint
 - Manufacturer's stock number
 - Color
 - Instructions for application
 - Paint analysis

13 Submittals

- 1 3 1 Submit proposed paint and color schedule for approval, including for each item
 - Surface to be painted
 - Type of paint
 - · Special thinners required, if any
 - Color
 - Special surface preparation required
 - Material Safety Data Sheet (MSDS)
- 1 4 Products Delivery and Storage
 - 1 4 1 Delivery of Materials -- Except for locally mixed custom colors, deliver materials in sealed containers with labels intact and legible
 - 1 4 2 Storage of Materials
 - 1 4 2 1 The Subcontractor shall provide storage facilities adequate to protect the paint materials and equipment from inclement weather. The storage facilities shall have adequate ventilation. During cold weather, the storage facilities shall be

Rocky Flats Environmental Technology Site	Manual	RF/ER-94-00044
OU 7 Passive Seep Collection and	Section	Painting, Rev 1
Treatment System	Effective Date	September 1995
Category	Organization	RMRS

heated to not less than the minimum recommended by the paint products manufacturer and at no time shall the temperature be below 35°F

1 4 2 2 At the end of each work day, all paint materials shall be removed from the work area and properly stored

1 5 Job Conditions

151 Environmental Conditions

- 1 5 1 1 Comply with manufacturer's recommendations for environmental conditions under which coatings and coating systems can be applied
- 1 5 1 2 Do not apply finish in areas where dust is being generated
- 1 5 1 3 Provide adequate ventilation when using flammable or toxic paint materials

152 Protection

- 1 5 2 1 Cover or otherwise protect surfaces not being painted
- 1 5 2 2 Furnish fire-retardant protective coverings Do not use flammable material for protective coverings unless special permission is obtained from the Buyer

2 Part 2 - Products

21 Materials

- 2 1 1 Materials selected for painting systems for each type of surface shall be the products of a single manufacturer
- 2 1 2 Other products not specified, but required for the job, shall be commercial products designed for the intended use

09900 2

Rocky Flats Environmental Technology Site	Manual	RF/ER-94-00044
OU 7 Passive Seep Collection and	Section	Painting, Rev 1
Treatment System	Effective Date	September 1995
Category	Organization	RMRS

3. Part 3 - Execution

3 1 Inspection

3 1 1 Examine surfaces scheduled to receive paint for conditions that will adversely affect execution, permanence or quality of work and which cannot be put into an acceptable condition through preparatory work.

3.2 Preparation of Surfaces

- 3 2 1 Ferrous Metal Surfaces
 - 3 2 1 1 Prepare surface in accordance with SSPC-SP2, Hand Tool Cleaning
 - 3 2 1 2 Feather edges of sand paint
- 3 2 2 Galvanized Metal Clean surface in accordance with SSPC-SP2, Solvent Cleaning Dry with clean lint-free cloth
- 3 2 3 Aluminum Clean surface in accordance with SSPC-SP1, Solvent Cleaning Dry with clean lint-free cloth

33 Application

in 2510612\specsec9 doc

- 3 3 1 Apply paint with suitable brushes, rollers, or spraying equipment
 - 3 3 1 1 Do not exceed rate of application recommended by paint manufacturer for type of surface. Keep brushes, rollers, and spraying equipment clean, dry, and free from contaminants.
- 3 3 2 Comply with recommendation of product manufacturer for drying time between succeeding coats
- 3 3 3 Vary slightly the color of successive coats. Tinting shall be uniform
- 3 3 4 Sand dust between each coat to remove defects visible from a distance

Rocky Flats Environmental Technology Site	Manual	RF/ER-94-00044
OU 7 Passive Seep Collection and	Section	Painting, Rev 1
Treatment System	Effective Date	September 1995
Category	Organization	RMRS

335 Finish coats shall be smooth, free of brush marks, streaks, laps or pileup of paints, and skipped or missed areas. Finished metal surfaces shall be free of skips, voids, or pinholes in any coat when tested with a low voltage. Doors, frames, and finished metalwork or woodwork shall be painted by brush or spray only. Do not roll

3 3 6 Inspection

- 3 3 6 1 Do not apply successive coats until each completed coat has been inspected and approved by Contractor
- 3 3 6 2 Only inspected coats of paint will be considered in determining the number of coats. Defective or improper previous coatings shall be removed or corrected to the satisfaction of the Contractor.
- 337 Make edges of paint adjoining other materials or colors clean and sharp with no overlapping

3 4 Cleaning

tp\2510612\specsec9 doc

- 3 4 1 Touch up and restore finish where damaged
- 3 4 2 Remove spilled, splashed, or splattered paint from all surfaces
- 3 4 3 Do not mar surface finish of item being cleaned

3 5 Painting Systems and Schedules

3 5 1 Painting Systems

- 3 5 1 1 Paint System One (PS-One) for interior-exterior metals
 - 3 5 1 1 1 Prime coat for touch up Oil-base, rush-inhibitive metal primer
 - 3 5 1 1 2 Finish Solvent-type Alkyd enamel, two coats
- 3 5 2 Paint Schedules (all colors will be selected by the Contractor when not specified)
- 3 5 3 Items Not Required to be Painted

09900 - 4

Rocky Flats Environmental Technology Site	Manual	RF/ER-94-00044
OU 7 Passive Seep Collection and	Section	Painting, Rev 1
Treatment System	Effective Date	September 1995
Category	Organization	RMRS

3 5 3 1 Exterior galvanized metals

Rocky Flats Environmental Technology Site Manual RF/ER-94-00044 **OU 7 Passive Seep Collection** Passive Treatment Tank, Rev 1 Section September 1995 and Treatment System Effective Date Organization Category

SECTION 13200 - PASSIVE TREATMENT TANK

1 Part 1 General

11 Summary

111 Scope of Work

- 1111 Items specified in this section apply to the seep treatment system
- 1112 Furnish and install the following as shown on the drawings to ensure a complete and operable system

112 **Related Sections**

- 1121 Section 13210 - Filters, Disposable Drum Filters, Chemical Storage Drums
- 1122 Section 13215 - Piping

12 References

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only

- 121 ASTM A36, Structural Steel
- 122 ASTM A283, Carbon Steel Plates, Shapes, and Bars
- 1.23 ASTM A307, Carbon Steel Externally Threaded Standard Fasteners
- 124 AWS A2 0, Standard Welding Symbols
- 125 AWS D1 1, Structural Welding Code
- 126 SSPC, Steel Structures Painting Council
- 127 ANSI B1 20 1, Pipe Threads, General Purpose (Inch)
- 128 ANSI B16 5, Pipe Flanges and Flanged Fittings

RMRS

Rocky Flats Environmental Technology Site	Manuai	RF/ER-94-00044
OU 7 Passive Seep Collection	Section	Passive Treatment Tank, Rev 1
and Treatment System	Effective Date	September 1995
Category	Organization	RMRS

13 Submittals

The following shall be submitted to the Contractor for approval

- Detailed tank plans showing location of all tank fittings with material takeoffs will be submitted prior to procurement. Design calculations and detailed construction drawings demonstrating compliance with this Section prior to procurement. As-built record drawings will be submitted and approved by Contractor at control closeout.
- 13.2 Copies of all laboratory and field test reports within 24 hours of the completion of the test

14 Qualifications

- 141 The tank manufacturer shall have been regularly engaged in the design and manufacture of steel tanks—such as specified herein for at least seven (7) years—The tank manufacturer's experience will include at least fifteen (15) tank installations of equal or larger capacity than specified herein
- 142 The tank shall be warranted for two (2) years to be free of defects in material and workmanship

15 Delivery, Storage, and Handling

- 151 Deliver, store, protect, and handle tanks in an orderly manner
- 152 Prior to shipment, place temporary caps and closures on all tank openings. Maintain in place until installation.

2 Part 2 Products

2.1 General

- 211 Service Secondary containment for reactor vessels
- 212 Fluid pH 40-90

tpl2510612\specsc10 doc 13200 - 2 10/10/95

Rocky Flats Environmental Technology Site	Manual	RF/ER-94-00044
OU 7 Passive Seep Collection	Section	Passive Treatment Tank, Rev 1
and Treatment System	Effective Date	September 1995
Category	Organization	RMRS

- 213 Installation Outdoors, min ambient temp of -20°F, max ambient temp of 120°F

 Placed below grade with top of tank flush with ground surface. Top of tank will be
 exposed to ultraviolet (UV) rays
- 214 Capacity 4,000 gallons and have an outside diameter of 10 feet and height of 7 feet, 2 inches
- 215 Type Vertical, flat bottom
- Design Pressure Bunal to top of tank (7 foot depth) plus one foot overburden on the top of tank Design soil pressures are as follows active lateral earth pressure (compacted silt) = 52 pcf, surcharge = 100 psf, soil compacted dry unit weight = 105 pcf, soil compacted wet unit weight = 120 pcf
- 217 Nameplate Each major component shall have a nameplate to list the manufacturer's name, address, component type or style, model or serial number, and catalog number on a plate secured to the equipment. Plates shall be durable and legible throughout equipment life and made of stainless steel. Plates shall be fixed to tank hatch with nonferrous screws or bolts.
- 2.2 Tank Design and Materials of Construction
 - 221 Tank manufacturer shall include the following
 - Tank itself, 10' diameter x 7'-2" high
 - Flange extending 12" beyond bottom of tank with (10) 1/4" x 3" x 27" stiffeners
 - 18" high x 4'-0" x 4'-9" manway
 - 4'-1" x 4'-10" hatch with hinges, handle to pull open, and hasp
 - Three lifting lugs attached to top of tank
 - Insulation, blown on, 2" thick, on hatch cover, in manway, on inside top of tank, and 1' down sides of tank
 - Steel ladder welded in
 - One sump, 12" x 12" x 4"
 - Bracket for attaching flow transmitter (Cross-section C)

to\2510612\specsc10.doc

- Bracket for filters (detail 8) (not attached to tank)
- (1) 5" pipe penetration
- (1) 4" pipe penetration
- (2) 3" FPTs in top of tank (one for vent and one for leak detection)
- (1) 3/4" FPT in top of tank for conduit
- 222 Steel Tank shall be fabricated of A-36 carbon steel, sandblasted, and coal tar epoxy coated. The tank shall be designed to withstand soil pressure as stated above. The tank shall be 10 foot diameter with 12 foot bottom flange to prevent vertical uplift as shown on plans. Initial calculations indicate that bottom and side walls will be 1/4" steel and top will be 5/16" steel with (2) 2" x 2" x 1/4" angle brackets weided to top
- 223 Welds

Bottom to sidewall

1/4" fillet weld each side

Top to sidewall

Inside 1/4" fillet weld, outside corner modified 1/4" butt weld

All other

Full penetration 1/4" butt weld welded one-half way from each side

- 224 Tank Connections Piping, vent, or instrument connections to the tank shall be welded unless noted on the plans as threaded
- 225 Link-Seal Gaskets Where noted on plans, penetration shall be sealed with Link-Seal gaskets, Model C, manufactured by Thunderline Corporation, or approved equal
- Support bracket tank manufacturer shall supply steel support bracket for filters as shown in Detail 8
- 227 Ladder shall be supplied and welded in place by tank manufacturer

tp\2510612\specsc10 doc

13200 - 4

10/10/95

Rocky Flats Environmental Technology Site	Manual	RF/ER-94-00044
OU 7 Passive Seep Collection	Section	Passive Treatment Tank, Rev 1
and Treatment System	Effective Date	September 1995
Category	Organization	RMRS

2.28 2" thick polyurethane insulation shall be spray applied to inside of tank hatch, inside top of tank, and one foot down inside walls from top

3 Part 3 Execution

31 Examination

- 311 Prior to tank installation, verify that grade surface has been properly prepared
- 312 Venfy that all tank openings are properly located as fabricated

32 Installation

- 321 Install tanks in accordance with manufacturer's instructions
- 322 Tanks shall be installed in as level a condition as possible, not to exceed _-inch slope as measured across the entire tank width
- 323 Upon completion of installation, a visual inspection of all penetrations shall be performed

Rocky Flats Environmental Technology Site	Manuai	RF/ER-94-00044
OU 7 Passive Seep Collection	Section	Miscellaneous Process Equipment, Rev 1
and Treatment System	Effective Date	September 1995
Category	Organization	RMRS

SECTION 13210 - FILTERS, DISPOSABLE DRUM FILTERS, AND CHEMICAL STORAGE DRUMS

1 Part I General

1 1 Description

1

1.1.1 Items specified in this section apply to the passive seep collection and treatment system

1.2 Related Sections

1 2 1 Section 13215 - Piping

13 Submittals

The following shall be submitted by the Construction Subcontractor to the Contractor for approval

- 1 3 1 Spare Parts Data The Construction Subcontractor shall furnish spare parts data for each different item of materials and equipment specified. The data shall include a complete list of parts and supplies, with current unit prices and source of supply
- 1 3 2 Operating and Maintenance Instructions Operating instructions outlining the step-by-step procedures required for system start-up and operation shall be furnished. The instruction shall include the manufacturer's name, model number, service manual, parts list, and brief description of all equipment and their basic operating features.

1 4 General Requirements

- 1 4 1 Standard Products Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products and shall essentially duplicate items that have been in satisfactory use at least 2 years prior to bid opening
- 1 4 2 Verification of Dimensions The Construction Subcontractor shall become familiar with all details of the work, verify all dimensions in the field, and shall advise the Contractor of any discrepancy before performing the work

13210 - 1

p\2510612\specsc11 doc

9/20/95

Rocky Flats Environmental Technology Site	Manual	RF/ER-94-00044
OU 7 Passive Seep Collection	Section	Miscellaneous Process Equipment, Rev 1
and Treatment System	Effective Date	September 1995
Category	Organization	RMRS

1 5 Qualifications

151 Company specializing in manufacturing the products specified in this section with minimum 3 years documented experience. Documentation shall be made available to the Contractor upon request.

1 6 Delivery and Storage

1 6 1 All equipment delivered and placed in storage shall be stored with protection from the weather, humidity and temperature variations, dirt and dust, or other contaminants

2 Part 2 Products

21 Filters

- 2 1 1 Filters shall be bag filters capable of holding 10 micron or 20 micron bags. Two filters shall be mounted in parallel to minimize head loss and maximize time between filter changeout
- 2 1 2 Filter housings shall be stainless steel with 2-inch female pipe thread (FPT) inlet and outlet ports

Bag filter shall be Rosedale 82-30-2P-2-150-N-S-D-B-S-B

Where

- 82 = Model 82
- 30 = 30-inch housing
- 2P = 2-inch FPT inlet and outlet
- 2 = side outlet
- 150 = 150 psi
- N = No ASME code stamp
- S = 304 stainless steel
- D = displacer
- B = Buna N cover gasket
- S = basket seal (required)
- B = filter bag basket (filter bags shall be 10 micron or 20 micron)

10/2510612\specsc11 doc

13210 - 2

9/20/95

Rocky Flats Environmental Technology Site	Manual	RF/ER-94-00044
OU 7 Passive Seep Collection	Section	Miscellaneous Process Equipment, Rev 1
and Treatment System	Effective Date	September 1995
Category	Organization	RMRS

2.2 Granular Activated Carbon (GAC) Disposable Drum Filters

- 2 2 1 Disposable drum filters (three) shall be 55-gallon size and constructed of steel. The drum filters shall be rated for a working pressure of 12 psi and a maximum flow rate of 10 gpm. Inlet and outlet connections shall be 2" FPT. Activated carbon shall be bituminous coal carbon, 8 x 30 mesh. Drums shall be Northwestern Carbon L-180 or Contractor approved equal.
- 222 Drum filter accessories to be supplied include the following (1) three drum dollies, Wagner Model 4000 or equivalent, and (2) Wesco vertical drum lifter, Wesco Manufacturing Model DL-1 or equivalent

2 3 Chemical Storage Drums

- 2 3 1 Chemical storage drums are to be polypropylene and 65-gallon size. Drum setup shall include a stand with spill containment. Drum to be ProTreat Technology Corporation drum or an approved equal.
- 2 3 2 Chemical storage drum shall have 3-inch glass tube type purge meter with 1/4-inch NPT fittings. Meter shall be Wallace & Tiernan Model C033 or approved equal. Tube from flow meter to 3-inch PVC collector pipe shall be 1/4-inch Teflon or Contractor approved equal.

3 Part 3 Execution

3 1 Equipment Installation

3 1 1 Filters, disposable drum filters, and chemical storage drums—shall be installed in the position indicated and in accordance with the manufacturer's written instructions—All appurtenances required for a complete and operating system shall be provided, including such items as piping, conduit, valves, fittings, and controls

3.2 Field Testing and Adjusting Equipment

3 2 1 Operations Test Prior to acceptance, an operational test of all systems shall be performed to determine whether the installed equipment meets the purpose and intent of the specifications Tests shall demonstrate that the equipment is not electrically,

13210 - 3

Rocky Flats Environmental Technology Site	Manuai	RF/ER-94-00044
OU 7 Passive Seep Collection	Section	Miscellaneous Process Equipment, Rev 1
and Treatment System	Effective Date	September 1995
Category	Organization	RMRS

mechanically, structurally, or otherwise defective, is in safe and satisfactory operating condition, and conforms with the specified operating characteristics. Tests shall include checks for leaks in all piping and seals, correct operation of control systems and equipment, and proper alignment.

3 2 2 Retesting If any deficiencies are revealed during any test, such deficiencies shall be corrected and the tests shall be reconducted at Subcontractor's expense

tp\2510612\specsc11 doc

13210 - 4

Rocky Flats Environmental Technology Site	Manual	RF/ER-94-00044
OU 7 Passive Seep Collection	Section	Piping, Rev 1
and Treatment System	Effective Date	September 1995
Category	Organization	RMRS

SECTION 13215 - PIPING

1. Part 1 General

11 Summary

)

111 Scope of Work

- 1 1 1 1 items specified in this section apply to the passive seep collection and treatment facility
- 1 1 1 2 Furnish and install the following as shown on the drawings to ensure a complete and operable system—double contained polypropylene piping, PVC piping
- 1 1 1 3 All piping shall be in compliance with RFETS SP-220

112 Related Sections

1 1 2 1 Section 02200 - Earthwork

12 References

SP-220, Rev J, Rocky Flats Plant Standard for Piping Material Specifications

1 2 2 SP-301, Rev J, Rocky Flats Plant Standard for Pipe Systems Testing Procedure

1 2 3 ASTM D1785, Poly (Vinyl Chloride) (PVC) Plastic Pipe, Schedules 40, 80, and 120

1 2 4 ASTM D2464, Threaded Poly (Vinyl Chloride) (PVC) Plastic Pipe Fittings, Schedule 80

1 2 5 ASTM D2467, Socket-type Poly (Vinyl Chloride) (PVC) Plastic Pipe Fittings, Schedule 80

1 2 6 ASTM A307, Specification for Carbon Steel Externally Threaded Standard Fasteners

1 2 7 ASTM D2564, Solvent Cements for Poly (Vinyl Chloride) (PVC) Plastic Pipe and Fittings

13215 - 1

1-50000-ADM-04 01, Rocky Flats Plant Verification and Testing Procedure

- 7 9/20/95

128

Rocky Flats Environmental Technology SiteManualRF/ER-94-00044OU 7 Passive Seep CollectionSectionPiping, Rev 1and Treatment SystemEffective DateSeptember 1995CategoryOrganizationRMRS

- 1 2 9 ASTM D2855, Making Solvent-Cemented Joints with Poly (Vinyl Chloride) (PVC) Pipe and Fittings
- 1 2 10 ASTM F656, Primers for Use in Solvent Cement Joints of Poly (Vinyl Chloride) (PVC)
 Plastic Pipe and Fittings
- 1 2 11 ASTM D4101, Black UV Stabilized Block Co-polymer Polypropylene Pipe
- 1 2 12 ASTM D2657, Butt Welding Polyolefin pipe
- 1 2 13 Environment Management QAP_jP, Sitewide Quality Assurance Project Plan

1 3 Submittals

The following shall be submitted by the Construction Subcontractor to the Contractor for approval

- 131 Piping Plan and Elevation Drawings Provide for approval dimensioned plan and elevation drawings indicating lengths, sizes, and routing of piping Include sections as required
- 1 3 2 Product Data Provide data on pipe materials, pipe fittings, valves, and accessories Provide manufacturer's catalog information, including installation instructions
- 1 3 3 Pressure Testing Log Provide pressure test record for each piping system, including the following minimum information—line designation number, date of test, type of test, pressure applied, length of time at test pressure, tested by, and any comments

1 4 Qualifications

1 4 1 Installer Company specializing in performing the work of this section with a minimum of three years of documented experience. Documentation shall be made available to the Contractor upon request.

1 5 Delivery and Storage

- 1 5 1 Deliver, store, protect, and handle products in an orderly manner
- 1.5.2 Accept valves on site in shipping containers with labeling in place. Inspect for damage

9/20/95

Ip/2510612/specsc12 doc 13215 - 2

Rocky Flats Environmental Technology Site	Manual	RF/ER-94-00044
OU 7 Passive Seep Collection	Section	Piping, Rev 1
and Treatment System	Effective Date	September 1995
Category	Organization	RMRS

- 1 5 3 Provide temporary end caps and closures on piping and fittings Maintain in place until installation
- 1 5 4 Protect piping systems from entry of foreign materials by temporary covers, completing sections of the work and isolating parts of completed system
- 1 6 Environmental Requirements
 - 1 6 1 Do not install underground piping when bedding is saturated or frozen
- 2 Part 2 Products
- 2 1 Double Contained Polypropylene Piping

Double Contained Polypropylene Piping shall meet SP-220 specification PR

- 2 1 1 Piping 2 inch through 4 inch Black, ASTM D-4101
- 2 1 2 Fittings All sizes Molded butt fusion, ASTM D-2657, 2 inch through 4 inch
- 2 1 3 Joining Method All double contained polypropylene pipe and fittings shall be joined using thermal butt fusion methods as recommended by pipe manufacturer
- 22 PVC Process Piping

PVC piping shall meet SP-220 specification PA

- 221 Piping
 - 2 2 1 1 ½ inch through 10 inch Schedule 80, PVC, Class 12454-B, threaded or plain ends, in accordance with ASTM D-1785 (only Schedule 80 pipe may be threaded) All piping shall be Schedule 80
- 222 Fittings
 - 2 2 2 1 ½ inch through 2 inch Type 1, Grade 1, PVC, Class 12454-B, Schedule 80, screwed or socket Fitting grade to match pipe grade

13215 - 3

Rocky Flats Environmental Technology Site	Manual		RF/ER-94-00044
OU 7 Passive Seep Collection	Section	•	Piping, Rev 1
and Treatment System	Effective Date		September 1995
Category	Organization		RMRS

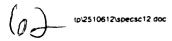
- 2 2 2 2 3 inch and larger: Type 1, Grade 1, PVC, Class 12454-B, Schedule 80 socket Fitting grade to match pipe grade
- 223 Flanges
 - 2 2 3 1 ½ inch and larger Type 1, Grade 1, Class 150, flat face, PVC, Schedule 80, socket
- 224 Unions
 - 2241 ½ inch through 2 inch Type 1, Grade 1, PVC, Schedule 80, socket or screwed
 - 2242 Larger than 2 inch Type 1, Grade 1, PVC, Schedule 80, socket
- 2 2 5 Bolting All Sizes Stud bolt, stainless steel, ASTM A193, Gr B8, Class 1, nuts, heavy hex, stainless steel ASTM A194, Gr 8, washers, ANSI B 18 22 1 Type B, Narrow Series, 304 stainless steel
- 2 2 6 Gaskets All sizes 1/8-inch neoprene, full face, 50 70 durometer A, Class 150
- 2 2 7 Cement for Socket Joints PVC solvent cement in accordance with ASTM D2564 and D2855 and as recommended by the manufacturer of the pipe and fittings
- 2 2 8 Primer Primer as recommended by the manufacturer of the pipe and pipe fittings
- 229 Valves
 - 2 2 9 1 Ball Valves in accordance with SP-220, valve specification sheet V1021 with the following exception

Operator

Below grade valve - cross or other remote operator; supply four-foot long key Valve in treatment tank - Lever

- 2.3 Flexible PVC Hose and Quick Disconnect Cam Operating Couplings
 - 2 3 1 Flexible PVC hose shall be Kanaflex PVC suction and discharge hose Series 100 Standard Duty, 2 inch or Contractor approved equal

Rocky Flats Environmental Technology Site	Manual	RF/ER-94-00044
OU 7 Passive Seep Collection	Section	Piping, Rev 1
and Treatment System	Effective Date	September 1995
Category	Organization	RMRS


- 2 3 2 Quick disconnect cam operating couplings shall be black glass filled polypropylene with EPT gaskets, rated to 100 psi, or Contractor-approved equal
- 2 3 3 Hose clamps for flexible PVC hose shall be Kanaflex "Power Lock" clamps, Harrington part number PLCP-020KF or Contractor-approved equal

3 Part 3 Execution

31 General

- 3 1 1 The Construction Subcontractor shall furnish all tools equipment, materials, and supplies and perform all labor required for furnishing the installation, testing, and flushing of all piping and appurtenances as shown on the drawings and specified herein
- 3 1 2 The work of this section shall include the furnishing, installation and testing of pipe, pipe supports, fittings, specials, and all required appurtenances as shown on the drawings and as required to make the entire piping system operable within the treatment system
- 3 1 3 All pipes, fittings, couplings, and appurtenant items shall be new, free from defects of contamination, and wherever possible, be the standard product of the manufacturer.

 They shall be furnished in pressure or thickness classes as specified or shown
- The different kinds of buried piping shall be installed in accordance with the drawings, procedures, and methods contained within this specification. Such procedures and methods shall conform to or exceed the minimum requirements of the pipe manufacturer and shall be as supplemented by the provisions specified herein. The interior of the pipe, fittings, and couplings shall be clean and free from contamination when installed Effective means shall be taken to prevent the entrance of foreign matter following installation. Where fittings are omitted from the drawings, they shall be the same size as the piping and in all cases shall conform to the piping code requirements.
- All pipe shall be carefully placed and supported at the proper lines and grades, and where practicable, shall be sloped to permit complete drainage. Piping run shown on the drawings shall be followed as closely as possible, except for minor adjustment, to avoid architectural and structural features. If reallocations are required, they shall be subject to the approval of the Contractor.

Rocky Flats Environmental Technology Site OU 7 Passive Seep Collection Section Piping, Rev 1 and Treatment System Effective Date Organization RMRS

- In the event that obstructions not shown on the drawings are encountered during the progress of the work that will require alterations to the drawings, the Contractor will have the authority to change the drawings and order the necessary de lations from the line or grade. The Construction Subcontractor shall not make any deviation from the specified line or grade without approval by the Contractor. Should any deviation in line or grade be permitted by the Contractor for the convenience of the Construction Subcontractor, any additional costs for thrust blocks, valves, blow-off assemblies, extra pipe footage, or other additional costs shall be borne by the Construction Subcontractor.
- 3 1 7 Storage and Handling During storage, handling, and transporting, every precaution shall be taken to prevent injury to pipe. Pipe shall be handled only by means of approved hooks on ends of sections, by means of fabric slings, or by other methods approved by the Contractor for the pipe used.
- 3 1 8 Verification of dimensions All dimensions essential to the correct locations of the pipe, or fit of piping at equipment and valves, or to the avoidance of obstructions or conflict with other improvements, shall be accurately determined by the Construction Subcontractor prior to fabrication of the piping involved. Any required change from the nominal locations shown on the drawings shall be made by the Construction Subcontractor and shall be included as a part of the work hereunder and will be subject to approval of the Contractor.
- 3 1 9 Construction Subcontractor shall provide non-conducting dielectric connections wherever joining dissimilar metals
- 3 1 10 All valves shall be installed with stems upright and horizontal, not inverted. Valve labels shall be applied to valves such that they are easily visible for the "normal" point of view. Valve handles shall be labeled with function and arrows indicating which direction to turn the handle to "open" or "close" the valve.
- 3 1 11 Piping shall be installed per manufacturer's installation instructions

3.2 Buried Pipe Installation

3 2 1 Buried piping shall be laid to the grades and alignment shown on the drawings and all trenching, bedding, and backfilling shall conform to Section 02200 Earthwork

13215 6

Rocky Flats Environmental Technology Site	Manual	RF/ER-94-00044
OU 7 Passive Seep Collection	Section	Piping, Rev 1
and Treatment System	Effective Date	September 1995
Category	Organization	RMRS

- The foregoing requirements shall govern the work, regardless of the type of pipe installed unless a more stringent requirement is specified. When the work is not in progress, open ends of piping and fittings shall be securely closed. The piping shall be placed when trench and weather conditions are suitable. No pipe shall be laid in water, and responsibility for the diversion of drainage and dewatering of trenches during construction, including meeting all safety requirements, shall be borne by the Construction Subcontractor. All piping in place shall be approved by the Contractor as to line, grade, bedding, and proper joint construction before backfilling. In all backfilling operations, the Construction Subcontractor shall be responsible for preventing damage to or misalignment of the pipe. No piping shall be buried until testing is completed and installation is approved by Contractor.
- 3 2 3 Coverage Unless otherwise shown on the drawings, all buried piping shall have a coverage of at least 24 inches between the top of the pipe and the finished surface
- 3 2 4 Variations from the pipeline grade and alignment may be allowed to accommodate fabrication with the approval of the Contractor. All changes of grade shall require the approval of the Contractor on the installation drawings.

33 Testing

- 3 3 1 If the Construction Subcontractor is not on the Site Approved Supplier List (ASL), then all testing shall be conducted under direct supervision and verified by qualified Contractor personnel. Testing shall be in accordance with Environment Management QAP_jP, Sitewide Quality Assurance Project Plan
- 3 3 2 Leak testing of piping system integrity shall be by either hydrostatic or pneumatic test methods as listed below
 - Double contained polypropylene—Test inner pipe in accordance with SP-301, hydrostatic test (Class B), at 75 psi. Test outer containment pipe in accordance with SP-301, pneumatic test (Class J) at 75 psi.
 - 3 3 2 2 PVC Pipe (All sizes)—Test PVC piping, in accordance with SP-301, hydrostatic test (Class B) at 75 psi

13215 - 7

Rocky Flats Environmental Technology Site	Manual	RF/ER-94-00044
OU 7 Passive Seep Collection	Section	Piping, Rev 1
and Treatment System	Effective Date	September 1995
Category	Organization	RMRS

- 333 Construction Subcontractor shall identify piping components, i.e., meters, instruments, that may not be designed for full hydrotest pressure and make provisions for testing the piping system with those components removed, as required
- 3 3 4 Leaks shall be located, repaired, and the line retested at expense of Subcontractor to the satisfaction of the Contractor
- 3 3 5 Warning Do not proceed with hydrostatic pressure tests above ground unless the construction supervisor has taken appropriate safety precautions
- 3 3 6 Pressure drops due to the thermal contraction are acceptable, if the pressure returns to the original test pressure after 2 hours

3 4 System Flushing

- 3 4 1 After tests are completed, piping shall be flushed. In general, sufficient water shall be used to produce a minimum water velocity of 2 5 feet per second through piping being flushed. Flushing shall be continued until discharge water shows no discoloration. System shall be drained at low points.
- 3 4 2 Construction Subcontractor shall not flush the 3-inch containment pipe as it is important to keep the annulus as dry as possible

9'20/95

tp.2510612\specsc12\doc 13215 - 8

Rocky Flats Environmental Technology Site	Manual	RF/ER-94-00044
OU 7 Passive Seep Collection	Section	Electrical, Rev 1
and Treatment System	Effective Date	September 1995
Category	Organization	RMRS

SECTION 16050 - ELECTRICAL

1 Part 1 General

11 Summary

111 Scope of Work

- 1 1 1 1 Items specified in this section apply to high-level indicator, leak detection indicator, flow meter, and the power supply to support these indicators and flow meter
- 1 1 1 2 Furnish and install the following as shown on the drawings to ensure a complete and operable system

2 Part 2 Materials

- 2.1 High-Level Indicator and Leak Detection Indicator
 - 2 1 1 Sensor shall be Flowline LV10-1301, vertical bouyancy sensor or Contractor approved equal (2 each) Strobe shall be Flowline LC09-1004, DC strobe alert or Contractor approved equal (2 each) mounted on Flowline LC06-1001 junction box and terminal strip or Contractor approved equal (2 each) Sensor shall be mounted on Flowline Smartrak LM10-1X01 (2 each, length per plans, X indicates length)

22 Flow Metering

2.2.1 Flow meter system shall consist of a SIGNET 8511 Compak Flow Transmitter or approved equal and a SIGNET 2535 Rotor-X Low-Flow Sensor or Contractor approved equal

23 Power Supply

Power supply shall be shared for the flow meter, the high-level indicator, and the leak detection indicator. It shall consist of a solar electric generator Model Number ST60-2G27-24V, with voltage regulation, engineered and manufactured by Remote Power Inc or approved equal. The solar electric generator is to be installed on a two-inch Schedule

16050 1

Rocky Flats Environmental Technology Site	Manual	RF/ER-94-00044
OU 7 Passive Seep Collection	Section	Electrical Rev 1
and Treatment System	Effective Date	September 1995
Category	Organization	RMRS

40 steel pipe (ten feet long, secured 30 inches into the ground with concrete) The solar electric generator's battery enclosure, the two Flowline LC06-1001 junction boxes, and the flow transmitter are to be connected with ¾-inch rigid galvanized steel conduit through which the wiring connections are to be made. The electrical connection between the terminal strip in the solar electric generator, the two Flowline LC06-1001 junction boxes, and the flow transmitter are to be made with THHN 14 gauge wire. The electrical connection between the flow meter and the flow transmitter shall be made with #22 SHLD wire (supplied with sensor)

2 3 2 Recommended parts lists for terminal strip located in solar panel box

Manufacturer	Part No.	Wire Range	Quantity	Description
Allen-Bradley	1492-F1	#22 #14 AWG	6	Terminal Block Tubular screw with pressure plate (25 amp)
Allen-Bradley	1492-H7	#30 #12 AWG	2	Terminal Block High density isolating terminal block with finger safe terminals (15 amp)
Allen-Bradley	1492-N17	N/A	1	End Barrier Used to cover 1492 N17 open side of terminal block
Allen-Bradley	1492-N18	N/A	1	End Barner Used to cover 1492 N18 open side of terminal block
Allen-Bradley	1492-N23	N/A	2	End Anchor Used to anchor ends of terminals on terminal strip
Allen Bradley	1492 N1	N/A	6" strip	Mounting Rail Breakaway mounting rail
Allen-Bradley	1492-N24	N/A	1	Jumper Strip Jumper is rated to carry 100% of rated terminal block current
Allen-Bradley	GBB-1	N/A	2	Ceramic Fuse Very fast acting fuse (1 amp)

Rocky Flats Environmental Technology Site
OU 7 Passive Seep Collection
and Treatment System
Category

Manual
Section
Electrical, Rev 1
September 1995
Organization
RMRS

2 3 3 Conduit and conductors schedule

Conduit #	Control Conductors	Size	Wire Type	Comments
100	2#14	3/4"	THHN	High-Level Indicator (Flowline LV 1301 Vertical Buoyancy Sensor) (Flowline LC09 1004 DC Strobe Alert) (Flowline IC06 - 1001 Junction Box & Terminal Strip)
101	2#14 -	3/4"	THHN	Leak Detection Indicator (Flowline LV 10 1301 Vertical Buoyancy Sensor) (Flowline LC09 1004 DC Strobe Alert (Flowline Lc06 1001 Junction Box & Terminal Strip)
102	2#14	3/4"	THHN	Flow Transmitter (Signet 8511 Compak Flow Transmitter)
102A	#22 SHLD	3/4"	THHN	Flow Meter (Signet 2535 Rotor X Low-Flow Sensor)

3 Part 3 Execution

3 1 Installation

- 3 1 1 Battery, battery box, and solar panel shall be installed as shown on plans and in accordance with manufacturer's instructions
- 3 1 2 High-level indicator, leak detection indicator, and flow meter shall be installed as shown on plans and in accordance with manufacturer's instructions
- 3 1 3 Inside the passive treatment tank, the ¾-inch galvanized steel conduit shall be attached to epoxy-mounted brackets rated to 100 psi vertical shear. These brackets shall be installed on job by electrical subcontractor.

32 Testing

- 3 2 1 The recommended procedure for testing the system is as follows
 - · Equipment needed
 - Volt Meter (Vdc)
 - Bucket filled with water
 - General
 - Check the power at the terminal strip to make sure that each terminal is reading the correct voltage

Rocky Flats Environmental Technology Site	Manual	RF/ER-94-00044
OU 7 Passive Seep Collection	Section	Electrical Rev 1
and Treatment System	Effective Date	September 1995
Category	Organization	RMRS

Flow Transmitter

 Follow the recommended procedure in the manual for installing and configuring the Signet Transmitter

Leak Detection Sensor

First check to make sure that the unit is receiving power. After the correct voltage is verified make sure all connections are secure. Placing the bucket of water underneath the float sensor, raise the bucket until the sensor actuates the limit switch and the beacon is illuminated.

• High Level Sensor

- First check to make sure that the unit is receiving power. After the correct voltage is verified make sure all connections are secure. Placing the bucket of water underneath the float sensor, raise the bucket until the sensor actuates the limit switch and the beacon is illuminated.

Appendix A

Design Calculations and Product Specification Sheets

Table of Contents

- 1 Design Calculations for Settling Basin, Bag Filters, and Granular Activated Carbon Drum Filters
- 2 Product Specification Sheets for Bag Filters
- 3 Product Specification Sheets for Granular Activated Carbon Drum Filters
- 4 Design Calculations for Head Loss in Pipes
- 5 Assumed Soil Loadings
- 6 Structural Design Calculations for Concrete Vault (Settling Basin)
- 7 Structural Design Calculations for Carbon Steel Tank
- 8 Uplift Calculations for Concrete Vault
- 9 Uplift Calculations for Carbon Steel Tank
- 10 Product Specification Sheet for Manhole Step
- 11 Product Specification Sheets and Design Calculations for Link Seal Gaskets
- 12 Product Specification Sheets for High Level Indicator and Leak Detection Indicator
- 13 Product Specification Sheets for Flow Sensor and Flow Transmitter
- 14 Design Calculations for Solar Panel and Battery
- 15 Wind Loadings and Structural Calculations for 65-Gallon Drum Holder and Solar Panel
- 16 Product Specification Sheets for Vertical Drum Lifter and Drum Dollies
- 17 Product Specification Sheets for Flexible PVC Hose, Quick Disconnect Couplings, and Hose Clamps
- 18 Product Specification Sheets Hydrogen Peroxide and Purge Meter
- 19 Product Specification Sheets for PVC Liner

1. Design Calculations for Settling Basin, Bag Filters, and Granular Activated Carbon Drum Filters

OU 7 Leachate Seep Design

9/21/95

Objective: Treat contaminants whose mean concentration in OU 7 seep water exceed applicable or relevant and appropriate requirements (ARARs) The remediation goal is to strive to meet ARARs. As an interim action, all ARARs do not have to be met

Contaminants of Concern: Table 1 presents the summary statistics for the OU7 seep (SW097) The following analytes are identified as contaminants of concern (COCs) because their mean concentrations exceed the ARARs

Metals

- Aluminum Figure 1 presents measured aluminum concentrations over time
 The value for 2/13/90 of 26,900 μg/L is an outlier and can be ignored. The mean value excluding this outlier is 1523 μg/L. The ARAR for total aluminum is 87 μg/L. The mean dissolved concentration is 58 μg/L.
- Manganese Figure 2 presents measured manganese concentrations over time The ARAR for manganese is consistently exceeded. There appears to be a slight downward trend over the period the data was measured. The mean total concentration is 1623 μg/L. The ARAR for total manganese is 50 μg/L. The mean dissolved concentration is 1582 μg/L. Manganese is naturally occurring in the environment and concentrations above background are not necessarily an indication of contamination. Manganese should not drive the remediation.
- Zinc Figure 3 presents measured zinc concentrations over time. The 2/13/90 value of 16,000 is an outlier and can be ignored. The time trend for zinc shows a slight but steady decrease to values that approximately equal the ARAR. The mean value excluding the outlier is 2250 μg/L. The ARAR for total zinc is 2,000 μg/L. The mean dissolved concentration is 1438 μg/L.

• Semivolatile organics

- 2-Methylnapthalene Figure 4 presents measured 2-methylnapthalene concentrations over time All the samples are detections and exceed ARAR. The mean concentration is 16 µg/L The ARAR is 10 µg/L
- Naphthalene Figure 5 presents measured naphthalene concentrations over time All the samples are detections and exceed ARAR The mean concentration is 18 µg/L
 The ARAR is 10 µg/L

• Volatile organics

- Benzene - Figure 6 presents measured benzene concentrations over time. The mean concentration is 2 μ g/L. The ARAR is 1 μ g/L

- Methylene Chloride Figure 7 presents measured methylene chloride concentrations over time. The value for 2/13/90 of 190 μg/L is an outlier and is ignored. The mean concentration is 14 μg/L. The ARAR is 4.7 μg/L. The presence of methylene chloride is not certain. There are nine detections out of twenty samples. Of these nine, two are outliers. Of the remaining seven, five exceed the ARAR. However, methylene chloride is a common laboratory contaminant that is frequently detected in background samples. Methylene chloride should not drive the remediation.
- Vinyl Chloride Figure 8 presents measured vinyl chloride concentrations over time. The mean concentration is 5 μg/L. The ARAR is 2 μg/L. The presence of vinyl chloride is not of certain. Only five detections occurred for twenty samples. Three of these detections occurred in 1990, when sampling protocols were not as strict. These 1990 samples are not validated. Vinyl chloride should not drive the remediation.

Design Constraints: The design flow for the treatment system will be 5 gallons per minute (gpm) The concentrations will be assumed to be the mean concentrations (The system will be able to handle larger flows and concentrations up to the maximum reported concentrations. However, increased maintenance may be required under these conditions.) The treatment system must be a passive system. There is no electrical service to the site. The system must therefore be either gravity-driven, solar-powered, or generator-driven. Of these three, gravity-driven is the cheapest and the most maintenance-free. The system design should strive to minimize construction costs, operating costs, and maintenance costs. Wastes generated from the treatment of seep water will be disposed of in the Present Landfill. The system's operating life is estimated at two years, although salvage of some system components to use during the 30-year closure period is possible.

Treatment Process Selected: Carbon absorption was selected as the primary treatment Sedimentation was selected as a pretreatment for carbon absorption

System Configuration: Water is collected in a perforated PVC pipe drain and discharged to a settling basin. Water is discharged from the settling basin to the reactor tank, where it undergoes filtration and granular activated carbon (GAC) treatment.

Design Considerations for Collection System: The height of the inlet pipe to the settling basin must be maximized to maximize the head available to drive the water through the treatment system. The PVC liner is placed approximately 2.5 feet below the pipe invert to help collect water just below the existing seep location. Water flowing into this liner will have an upward flow component, just like water in an aquifer below a partially-screened well. The collection system should not require maintenance over the two-year project life. Cleanouts will be provided in case cleaning is required.

Design Considerations for Settling Basin: To prevent fouling of the GAC media, GAC manufacturers recommend pretreatment of influent water by passing it through a 10 micron filter. The settling basin is designed to remove particles greater 10 microns to the extent feasible.

The seep water has a mean total suspended solids (TSS) concentration of 145 mg/L, with the measured range of concentrations 10 to 210 mg/L. Table 2 presents the calculations for sizing the settling basin. Based on these calculations, the minimum depth of the settling basin is 4.4 feet to the invert of the settling basin outlet. The minimum area is 60.1 ft². For a 5 gpm flow with a TSS range of 100 to 200 mg/L, this size results in TSS outflow concentrations of 30 to 42 mg/L, respectively. This remaining TSS should consist mainly of particles smaller than 15 microns (see Figure 22.5, Urbonas and Stahre, 1993, attached). At 5 gpm and an initial TSS of 145 mg/L, the buildup in a tank of this size is 0.9 feet over a two-year period. The settling basin should not require clean-out over the two-year operating life. If clean-out is required, the outlet pipe valve should be shut and the sediments pumped from the bottom. One day should be allowed for settling before the outlet pipe is turned on again.

Design Considerations for Filtration System: A bag filtration system is included as the first process in the treatment tank. The filter housing can accommodate filters of different hole sizes. Initial head losses across commercially available bag filters are approximately 0.25 psi. As the filter operates, the head loss increases. The passive system has approximately 4 feet of head available, or 1.7 psi. No vender information is available for the filter capacity at 1.7 psi. The filter capacity at 35 psi is on the order of 2,000 gm of particles (for each one of the two filter housing). At 1.7 psi, the capacity would be a fraction of that value. If the capacity is 200 gm of particles per housing, at 35 mg/L TSS, 5 gpm, and 50% capture, the capacity would be reached in approximately one day. Table 3 presents this calculation for a 2 housing bag filter. Again, there are no specifications available regarding filter capacities at 1.7 psi. The filter chosen is a high capacity filter with two housings in parallel. Bag filters have lower head drops than cartridge filters. The filters can be used initially with 10 micron bags. If the required changeout time is too frequent, the filter can be used with 20 micron bags.

Note the high-level indicator in the settling basin is designed as an alarm to indicate that the filters have plugged and require changeout

Design Considerations for Granular Activated Carbon System: The conceptual design presented a carbon-based media placed in a tank between gravel layers for inflow and outflow The current design uses instead 55-gallon drum reactors that are commercially available This configuration will result in vastly decreased costs for carbon change-out Table 4 presents the design calculations for the GAC system. The actual rate of carbon usage with respect to the breakthrough of each compound cannot be known without large scale testing or, more likely for OU 7, actual operation of the system However, the theory and practice of activated carbon absorption support the concept that species that are not well absorbed can break through while absorption capacity is retained for easily absorbed species GAC manufacturers and vendors support the following premises (1) the breakthrough of poorly absorbed compounds does not significantly affect the absorption of better absorbed compounds, (2) more easily absorbed molecules can displace already absorbed molecules of compounds that are not well absorbed, and (3) the carbon usage as calculated for each individual species is a good initial estimate of the carbon usage for that particular species, although actual breakthrough will occur more quickly than indicated by the isotherm. The application which is intended at OU 7, which is to let some compounds break through that are below ARARs, is a relatively common water treatment process. Carbon usage for the

ŗ

treatment process is uncertain. Theoretical isotherms indicate that certain compounds (chloroethane in particular) will break through in days or weeks. The first compound that exceeds its ARAR to break through (benzene) should take a few to several months to break through. There are two change-out options (1) change out only the first drum, placing a new drum as the final drum (would be required once every two months), and (2) change out all three drums drum (would be required once every three years). Option 1 should minimize carbon costs, while option 2 should minimize labor costs. Since the reactor will be governed by confined space entry requirements and machinery will be required for drum change-out, option 2 will probably be cheaper.

The operations plan should include periodic sampling before the third GAC drum Breakthrough for the second drum can be detected and breakthrough for the third drum can be estimated, allowing drum changeout before breakthrough of the third drum occurs

Expected Treatment Efficiencies: For Organics Volatile organic compounds and semivolatile organic compounds should be removed to below detection limits until breakthrough occurs. Vinyl chloride will break through relatively quickly if the mean concentrations are present. However, the presence of vinyl chloride is not certain. Vinyl chloride is very volatile. Some removal may occur in the settling basin. It is recommended that the breakthrough of vinyl chloride be tolerated without carbon change-out. Carbon change-out should occur with the breakthrough of benzene.

For Metals: Significant reductions in aluminum and zinc concentrations should occur through the sedimentation process. Dissolved concentrations of metals are based on samples that pass through a 0.45 micron filter. The sedimentation process should take out most particles greater than 15 microns. The concentrations after the sedimentation process should be somewhat greater than the dissolved concentrations. The sedimentation process should succeed in meeting ARARs for zinc. The ARAR for aluminum may or may not be met. The efficiency of the system for removing manganese is highly questionable. Over 97 percent of the manganese is dissolved. The manganese most likely exists in a stable dissolved oxide form. The sedimentation and GAC processes are not likely to remove the manganese. The discharge concentrations of manganese will most likely exceed the manganese ARAR. As stated before, the presence of manganese should not drive the remediation.

Biocide and Scale Prevention: A commercially available biocide and scale preventer will be gravity fed into the system at the settling basin influent

Table 1
ARARs Comparison for Leachate at the Seep (SW097)

)

1

			Detections			Qualifier for	Validation for			
	Detection	Detection	Exceeding	Minimum		Maximum	Maximum	Mean		
Analyte	Limit Range	Frequency	ARAR	Result	Detection	Detection	Detection	Result	ARAR Units	Silte
METALS										
ALUMINUM	10 ~ 30000	16/19	13	29	26900			2629	87	ਨੂੰ ਹ
ANTIMONY	09 - 50 0	4/18	0	14	60 4		٧	20	300	UGL
ARSENIC	07-10	8/16	0	14	3	8		3	20	UGL
BARIUM	0 00 - 20000	19/19	1	297	1550			645	1000	UGAL
BERYLLIUM	02-5	2/18	0	0.2	1.4	-	٩٢	1	4	UGA
CADMIUM	01-165	4/18	0	1	9 2	-		3		UGA
CALCIUM	14 5 - 100000	19/19	0	126000	212000	1		151737	TVS	UGA
CHROMIUM	24-275	7/18	0	2	296	1		6	20	UGAL
COBALT	0 0 - 20	10/18	0	2.7	191	В		11	50	UGA.
COPPER	24-25	8/18	0	2	94.9	-		12	TVS	UGL
IRON	4 7 - 30000	19/19	0	61300	155000	-		81005		UGL
LEAD	0 8 - 2000	14/18	0	1.5	11	1	^	5	TVS	UGAL
LITHIUM	2 - 2000	15/19	0	34	107		۸	48	2500	UGIL
MAGNESIUM	0 1 - 200000	19/19	0	29300	49000	1	-	34868		UGIL
MANGANESE	1 - 10000	19/19	19	1320	2490	1	****	1623	50	UGA
MERCURY	0 02 - 0 2	1/18	0	0.1	0 28		<u>.</u>	0.1	10	UGL
MOLYBDENUM	57-200	6/18	0	4	28 5	В		21		UGAL
NICKEL	0 02 - 40	5/18	0	9	31	-	۸	12	125	UGL
POTASSIUM	10 - 200000	18/19	0	2000	11700			6511		UGAL
SELENIUM	11-5	2/18	0	11	7	Μ		2	21	UGAL
SILVER	26-25	8/18	0	2.7	167			5	92	UGL
SODIUM	10 - 50000	19/19	0	27700	110000		۸	71468		UGL
STRONTIUM	3 5 - 10000	17/19	0	814	1370	-		920		UGAL
TIN	10 - 200	8/18	0	11	243	1	-	48	0008	UGL
VANADIUM	32-10000	12/19	1	3.1	211			25	100	NGA
ZINC	18-10000	18/19	16	857	16000	ł	ţ	2974	2000	UG/L
PESTICIDES										
alpha BHC	0.05 - 0.28	1/3	0	0	0	-	1	900		UGAL

Table 1 ARARs Comparison for Leachate at the Seep (SW097)

			Detections			Qualifier for	Validation for			ſ
	Detection	Detection	Exceeding	Minimum	Maximum	Maximum	Maximum	Mean		
Analyte	Limit Range	Frequency	ARARs	Result	Detection	Detection	Detection	Result	ARAR	Units
RADIONUCLIDES										
AMERICIUM-241	0 - 0 013	16/16	0	-0 000404	0 02121		^	0 007	30	PCIAL
CESIUM 137	0 47 - 1	14/14	0	-0 21	0 6057	ſ	1	0 15	3000	PCIL
GROSS ALPHA	15-74	8/8	0	0 8918	6 639		^	29		PCIA
GROSS BETA	1 69 - 11 5	8/8	0	3 753	17	I	^	10		PCIL
PLUTONIUM-238	0 01 - 0 01	2/2	0	-0 000465	0 00222	ſ	Α	0 00088	30	PCIAL
PLUTONIUM-239	E00 0 - E00 0	1/1	0	0 009	0 000	_	-	0 000	30	PCIA
PLUTONIUM-239/240	0 - 0 013	16/16	0	0 001	0 01606		A	0 007	30	PCIA
RADIUM-226	0 03 - 0 03	1/1	0	0 58	0 58	-	A	0 58	100	PCIAL
STRONTIUM-89,90	0 21 - 1	6/6	0	99 0	4 06		^	1 35	8	PCIAL
STRONTIUM-90	02-059	8/8	0	0 5442	11		1	0.7		PCIAL
TRITIUM	155 - 450	19/19	1	185 4	1500	ļ	Y	393	1000	PCIAL
URANIUM-233,-234	01-06	12/12	0	-0 0238	4.2	В	A	0.8		PCI/L
URANIUM-235	90-0	12/12	0	-0 012	0 084	-D	4	0 03	600	PCIAL
URANIUM-238	0 080 - 0 6	12/12	0	0 03914	3 76	1	¥	1	900	PCIA
										[
SEMIVOLATILE ORGANICS										
2,4 DIMETHYLPHENOL	10 - 10	1/5	0	3	3	J	∢	5	36	NGA
2-METHYLNAPHTHALENE	10 - 10	5/5	2	12	23	i	>	16	10	LOR LOR
4 METHYLPHENOL	10 - 10	3/5	0	2	4	ľ	-	4		UG/L
ACENAPHTHENE	10 - 10	5/2	0	2	3	7	4	3	520	NG/L
BIS(2-ETHYLHEXYL)PHTHALATE	10 - 12	1/5	0	2	2	ŋ	A	5	10	UG/L
DIBENZOFURAN		5/2	0	1	2	ſ	¥	1	10	UG/L
DIETHYL PHTHALATE		4/5	0	1	3	J.	¥	3	200	NG/L
FLUORENE	10 - 10	5/2	0	2	3	J	A	2	10	NG/L
NAPHTHALENE	10 - 10	5/5	5	14	22	Ī	۸	18	10	UGAL
PHENANTHRENE	10 - 10	5/5	0	4	5	ſ	4	4	10	UG/L
VOLATILE ORGANICS										
1,1-DICHLOROETHANE	5-5	17/20	0	2	10	1	>	9	59	UG/L
1 2-DICHLOROETHENE		10/20	0	2	14	ļ	>	4	70	UG/L
2-BUTANONE	10 - 10	6/19	0	9	76	ı	>	12	280	UGAL
2-HEXANONE		1/20	0	-	10	1	>	5	50	UGAL
4 METHYL-2-PENTANONE	10 - 10	5/20	0	10	87	٦	A	11	140	UG/L
			!							

8/28/95

Table 1 ARARs Comparison for Leachate at the Seep (SW097)

	Q T	Exceeding ARARs 0	≥	Maximum	Maximum	Maximum	Mean		•
Limit Rai 10 - 10 15 - 5 1SULFIDE 5 - 5 THANE 10 - 10		ARARs 0	:						_
10 - 10 5 - 5 ISULFIDE 5 - 5 THANE 10 - 10	 	0	Result	Detection	Detection	Detection	Result	ARAR	Units
IISULFIDE THANE	11/20 1/20 15/20 2/20		2	220	1	4	34	280	UGAL
IISULFIDE THANE	1/20 15/20 2/20	4	-	2	ſ	į	2	-	절
	15/20	0	5	9	•	Į	3		NG/L
	2/20	0	10	29	1	>	22		UGA.
ICHLOROMETHANE 10 - 10		-	4	7	ſ	¥	5	57	NG/L
ETHYLBENZENE 5 - 5	19/20	Q	1	18	-	Į	13	22	NG/L
METHYLENE CHLORIDE 5-5	9/20	5	3	180	B.	***	14	4.7	LOG LOG
0-XYLENE 5-5	3/4	0	5	8		Į	9		NG N
TETRACHI OROETHENE 5.5	2/20	0	-	-	Ĵ	*****	2,	-	COL
TOI UENE	19/20	0	5	88	-	-	38	1000	UGIL
ENES	19/20	1	-	25	7	Ą	14	10000	NG/
TRICHLOROETHENE 5-5	11/20	1	1	4	7		2	27	NG/L
VINYL ACETATE 10-10	1/19	5	10	49	•	Ī	2.2	9	L G/L
VINYL CHLORIDE 10 - 10	5/20	0	3	11		>	5	2	UGA.

WATER QUALITY PARAMETERS										
BICARBONATE AS CACO3	1000 - 10000	15/15	0	554000	705000		>	595800		701
CARBONATE AS CACO3	1000 - 10000	2/9	0	0	0	-		3889		16/1
CHIORIDE	100 0 - 50000	14/14	0	1800 0	0 00899	1	^	53650	_	JG/L
CYANIDE	10 - 20	1/14	0	15	36.8	-	l	6	200	JG/L
DISSOLVED ORGANIC CARBON	1000 - 1000	4/4	0	14000	27000		Αſ	18750		JG/L
FLUORIDE	100 0 - 200 0	12/12	0	390 00	540 00		>	469 2	2000	No/L
NITRATE/NITRITE	20 00 - 200 0	6/10	0	20 00	870 00	1	>	263	10000	UG/L
NITRITE	20 00 - 20 00	6/9	0	20 00	000 E9		>	30 33	200	UG/L
OIL AND GREASE	200 0 - 11100 0	4/12	0	0 008	42100 0		>	7013		UG/L
ORTHOPHOSPHATE	10 00 - 200 0	3/10	0	20 00	150 00	•		609		UG/L
Ho		5/5	0	6.8	7.3	-		7		F
PHOSPHORUS	50 00 - 1000	6/6	0	95 000	1380	•		387		UG/L
SILICA	400 0 - 2000	3/3	0	7400 0	43000	-		19567		UG/L
SILICON	73-2000	13/13	0	7060	44000		1	13547		UG/L
SOLIDS, NONVOLATILE SUSPENDED	2000 - 2000	9/9	0	10000	199000	1	-	83167		NG/L
SULFATE	200 0 - 25000	5/14	0	200 0	29600 0	1	>	5084	250000	NG/L
TOTAL DISSOLVED SOLIDS	10000 - 10000	15/15	0	470000	870000		l	729333		UG/L

8/28/95

\Z\-\$\int\{\partial}\

ARARs Comparison for Leachate at the Seep (SW097) Table 1

			Detections			Qualifier for	Qualifier for Validation for			
	Detection	Detection	Detection Exceeding Minimum Maximum Maximum	Minimum	Maximum	Maximum	Maximum	Mean		-
Analyte	Limit Range	Frequency	ARARs	Result	Detection	Result Detection Detection	Detection	Result ARAR Units	ARAR	Units
TOTAL ORGANIC CARBON	1000 - 1000	3/3	0	19000	24500 0	١	^	20833		UGAL
TOTAL SUSPENDED SOLIDS	4000 - 5000	12/12	0	10000	250000	1	1	144667		NG/L

Shaded analytes indicate mean result exceeds ARAR

All analytes are total analytes unless otherwise noted

Analytes with zero detections are not reported

For non-detects, one-half the detection limit is used in calculating the mean result

1 For tetrachloroethene, the maximum detection equals the ARAR, the mean exceeds the ARAR because one-half detection limit for non-detects exceeds the ARAR

2 For vinyl acetate, one detection out of nineteen causes mean to exceed ARAR, suggests that one detection is outlier and should be discarded

Data Qualifiers

- = data qualifier field in database is blank

B = for organics, analyte is also detected in blank,

B = for inorganics, reported value is < Contract Required Detection Limit but > instrument Detection Limit (estimated value)

for common lab contaminants include as detection if blank result > 10 times detection limit,

for all other organics include if blank result > 5 times detection limit

B = for radionuclides, constituent also detected in blank whose concentration was > minimum detectable activity

I = organics, interference with target peak (estimated value)

J = for organics, Matrix Spike data indicate presence of compound but below detection limit (estimated value)

U = for inorganics and organics, analyte analyzed but not detected at the quantitation limit

W = inorganics post-digestion spike for Graphite Furnace Atomic Absorption analysis is out of control limits while sample absorbance is less than 50% of spike absorbance

Data Validation Codes

- = data validation field in database is blank

A = acceptable result

JA = acceptable result (for estimated value)

V = valid result

Table 2 Calculation of Settling Velocities for Particles and Sizing of Settling Basin

Calculation 1: Basin Volume using Settling Velocity from Stokes' Law

Settling Velocity (from Stokes' Law, Thomann and Mueller, Principles of Surface Water Modeling and Control, Harper Collins Publishers, 1987)

 $v_{s} = 0.033634 \text{ (tho}_{s} - \text{tho}) d^{2}$

where

1

d = diameter of particle, um =	5	10	50
rho _s ¹ = density of particle, g/cm ³ =	1 57	1 42	1 11
rho = density of water, g/cm³ =	1	1	1
v _s = settling velocity, m/day =	0 48	1 40	9 43

¹ Empirically, $rho_s = 2.0 \text{ } d^{(-0.15)}$

Another empirical study notes that settling velocities of lacustrine and manne particles are up to an order of magnitude higher than Stokes' velocity

Settling velocity based on Stokes' velocity for 10 um particle is 1 4 m/day Larger particles should have greater settling velocities. Stokes' velocity should underestimate the settling velocity

8/28/95

Table 2

Calculation of Settling Velocities for Particles and Sizing of Settling Basın

Calculation 1: Basin Volume using Settling Velocity from Stokes' Law (continued)

Hazen's Surface Load Theory (Urbonas, Ben, and Stahre, Peter, Stormwater, Best Management Practices and Detention for Water Quality, Drainage, and CSO Management PTR Prentice Hall, 1993)

A = W * L

V = A * D

T = V/Q = (A * D)/Q

Where

A = area

W = width

L = length

V = volume

D = depth

T = time for flow to pass through the basin

Q = flow rate

For a particle to settle to the bottom as it passes through the basin, its average descent velocity must be at least

$$v_s = D/T = Q/A$$

Vs	1 4	m/day	(from calculation above)
Q (gpm)	5	gpm	
Q (m³/day)	27 3	m³/day	7
minimum A =	19 5	m²	

Turbulent flow can cause resuspension and reduce removal to only 60% of particles To reduce turbulence, average basin depth should be no less than 3 5 feet (suggested depths 5 to 12 feet)

Assume D =

4 ft =

12 m

 $T = (A \cdot D) / Q =$

0 87 days =

21 hours

Table 2 Calculation of Settling Velocities for Particles and Sizing of Settling Basin

Calculation 2: Basın Volume Based on Empirical Data

Studies of settling times and % removal based on initial TSS produced the following results From Urbonas and Stahre, Figure 22 9, p 335

Settling Time	Initial TSS		Final TSS
(hours)	(mg/L)	% Removal	(mg/L)
2	100	58	42
6	100	70	30
24	100	83	17
48	100	90	10
2.	200	65	70
6	200	79	42
24	200	86	28
48	200	90	20

A six-hour settling time results in a final TSS in the range of 30 - 42 mg/L (down from initial range of 100 - 200 mg/L)

Let T =	6	hours =	0 25	days
Q (gpm)	5	gpm		
Q (gpm) Q (m³/day)	27 3	m ³ /day		
V=Q*T=	6 8	m ³ =	240 4	ft ³
Depth, D	1 2	m =	4	ft
Area, A	5 6	m² =	60 1	fit ²

)

Table 2 Calculation of Settling Velocities for Particles and Sizing of Settling Basın

Calculation 2: Basin Volume Based on Empirical Data (continued)

Volume of Settled Particles per Day

TSS Conc (mg/L)	Flow (gpm)	Flow (liter/day)	TSS (mg/day)	Conversion (mg/ cm³)			TSS(ft³/day)
145	5	27288	3956760	1825	2168	2.17	0 08

If density of settled particles is midway between that of water (1000 mg/cm³) and that of a solid soil particle (2650 mg/cm³), or 1825 mg/cm³, the volume of settled TSS per day is 0 08 ft³

Volume of Settled Particles for Different Time Periods

	TSS (1 day)	TSS (1year)	TSS (2 years)	TSS (3 years)
Volume (ft ³)	0 08	27 9	55 9	83 8
Tank Area (ft²)	60	60	60	60
Depth of Settled Particles (ft)	0 001	0 5	09	14

Depth of settled particles is 0.9 feet after 2 years. If minimum depth for settling basin is 3.5 feet, then minimum design depth should be 4.4 feet to bottom of outlet

8/28/95

STORMWATER

1

Best Management Practices and Detention of Year Water Quality, Drainage, and CSO Management

BEN URBONAS

--- Urban Flood Control District • Denver • Colorado

DETER CTAHRE

----- Malmo Water and Sewer Works • Malmo • Sweden

PTR Prentice Hall, Englewood Cliffs, New Jersey 07632

331

22 3 HAZEN'S SURFACE LOAD THEORY

Hazen's surface load theory assumes that for a particle to be permanently removed from the water column, it must reach the bottom of a basin before the water carrying it leaves the basin. Consider a long rectangular basin of length L, width W, and depth D The surface area A of the basin is then

$$A = W L \tag{22.6}$$

and the volume V is

$$V = A D \tag{22.7}$$

Further, assume that fluid passing through the basin at a flow rate of Q is uniformly distributed over the cross-section W H and that all the particles which have time to sink to the bottom will be permanently removed from the fluid The descent height is the largest for particles entering the basin at the water surface ($i \in D$, the depth of the basin)

The time T for the flow to pass through the basin can be given by

$$T = \frac{V}{Q} = \frac{(A \ D)}{Q} \tag{22.8}$$

For a particle to settle to the bottom as it passes through the basin, its average descent velocity has to be at least

$$v_i = \frac{D}{T} = \frac{Q}{A} \tag{22.9}$$

It can thus be stated that the sedimentation effect of a basin can be expressed by the ratio between Q and A, which is sometimes referred to as the surface load Equation 22 9 states that the surface load is equal to the descent rate of the smallest particle that can just be separated in the basin

This surface load theory presupposes that the flow through the basin is uniform and laminar Unfortunately, these are not the conditions found in practice A field installation can experience multilayered flow, turbulence, eddies, circulation currents, diffusion at inlets and outlets, etc (see Figure 22 3) Some investigators speculate that under turbulent conditions no more than 60% of the removal predicted using Hazen theory is achieved. In design, correction factors are used to compensate for this observed difference between theory and actual performance

local velocities, sediments can be resuspended from the bottom. To reduce the chances of resuspension, it is recommended that the average basin depth be no According to the preceding equations, depth has nothing to do with sediment removal in a basin However, because of turbulence, diffusion, and less than 3 5 feet (1 07 m) It is suggested, however, that sedimentation basins and 12 feet (1 5 and 3 5 m) deep

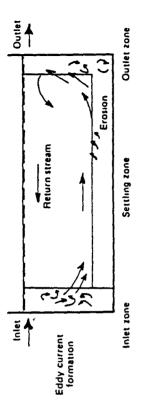


Figure 22 3 Examples of flow disturbances in a basin

22 4 SEDIMENTATION IN STORMWATER UNDER QUIESCENT CONDITIONS

Until the early 1980s, very few studies dealt with the separation of pollutants here, namely, the work by Peter Stahre in Sweden Since then, studies by Rinella and McKenzie (1983), Randall et al (1982), and Whipple and Hunter (1981) have produced significant new information about the settling characteristics of TSS and associated pollutants. Nevertheless, the literature on this from stormwater by sedimentation. One of these is further commented on topic is still very limited

22 4 1 Stahre's Findings

A more comprehensive study of sedimentation properties of TSS in stormwater was conducted by Stahre He investigated how particle size distributton and particle volume varies with time. Using a pipette, Stahre sampled During the first hour, samples were taken at 5-minute intervals. After that, additional samples were taken at 90 and 120 minutes Each sample was analyzed for particle size distribution, and the particle volume distribution by water in a settling tube at various times after settling was permitted to begin particle size was calculated

Figures 22 4 and 22 5 depict Stahre's findings of particle numbers and volumes for each size fraction in the water column as a function of sedimentation time Both figures show results only for particles smaller than 25 microns

As can be seen in Figure 22 4, the number of particles in the 5 to 10 micron size appears to increase rapidly during the first hour and continues to increase for a total of 90 minutes from the start of the test. After that, the number of particles appears to decrease Something similar was observed for the 10 to 15 micron size fraction, except the numbers increased only very slightly for the first 15 minutes

ered by An explanation for this apparently unusual finding was Stahre He speculated that the equipment that counted the partic

be betwo

Chap (

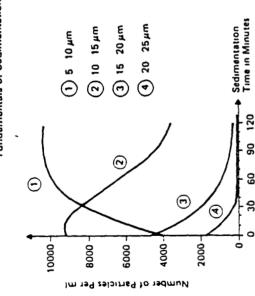
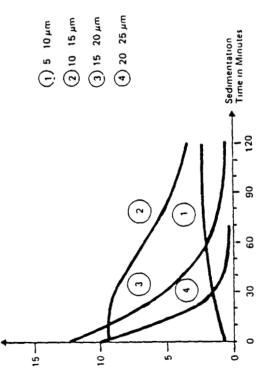



Figure 22 4 Number of particles in water column as a function of sedimentation

Particle Volume in mi/l x

Figure 22 5 Volumes of particles as a function of sedimentation time

Regardless, because the 5 to 10 micron particles are very small, they contribute very little to the volume estimates of the suspended solids in the water mistaken small air bubbles in the water for particles. He did not, however, explain what may have caused the small air bubbles to appear early in the test column (see Figure 22 5)

Sedimentation in Stormwater Under Quiescent Conditions Sec 224

By compositing all of the size fractions into a single volume of suspended solids, Stahre obtained a very smooth, exponentially decaying curve. This is shown in Figure 22 6, where the effect of sedimentation time is related to the total volume of suspended solid particles remaining in the water column

22 4 2 Randall's Findings

Randall et al (1982) reported results of laboratory settling tube tests of ion after 48 hours of sedimentation leveled off to between 5 and 10 milligrams per liter (see Figures 22 7 and 22 8) This is similar to the findings reported for sedimentation tunnels in Sweden, where the TSS concentrations bottomed out at 10 milligrams per liter. Although the settling tube tests appear to have somewhat lower final concentrations, both sets of results indicate a practical bottom limit of approximately 10 milligrams per liter in the removal of TSS by seven urban stormwater runoff samples They found that the TSS concentra sedimentation

tion increased Stahre and Urbonas plotted Randall's data as percent TSS The Randall et al findings confirm another observation in Sweden, namely the percentage of TSS removed increased as the initial TSS concentra-

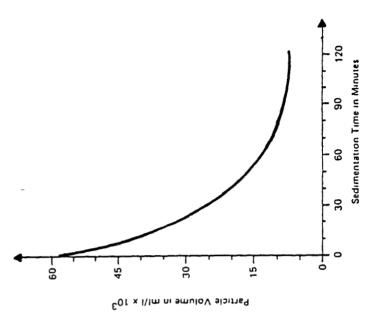


Figure 22 6 Effects of sedimentation time on total particle volume in stormwater

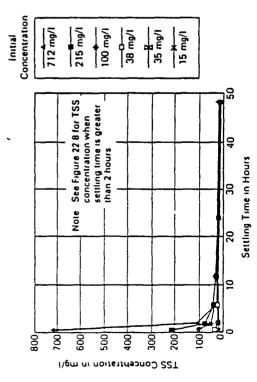


Figure 22.7 Effects of time of sedimentation on TSS concentrations (After Randall et al , 1982)

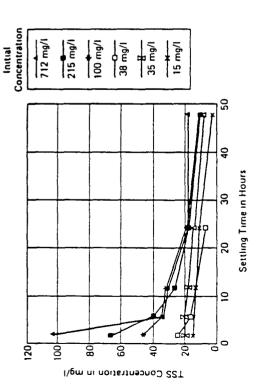


Figure 22 8 Effects of time of sedimentation 2 to 48 hours, on TSS concentra tions (After Randall et al., 1982)

tions are around 10 milligrams per liter. The removal efficiencies increase rapidly as the initial concentration increases to about 100 milligrams per liter, removed vs initial concentration (see Figure 22 9) This graph clearly indicates that the TSS removal efficiencies are very poor when initial concentraafter which the removal efficiency begins to level off

Sedimentation in Stormwater Under Quiescent Conditions Sec 22 4

lics tests in settling tubes for several other constituents found in the same lency or uniformity in removal efficiencies found for TSS However, it was stormwater samples None of the other constituents exhibited the same consis-In addition to TSS, Randall's group also conducted settling characterisclear that sedimentation was able to reduce their concentrations in water Figures 22 10 through 22 14 contain graphs showing percent removal vs sedimentation time for several of the constituents

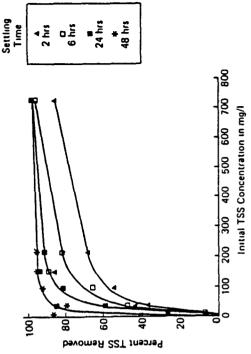


Figure 22 9 Effects of initial TSS concentration on removal rates (After Randall ct al , 1982)

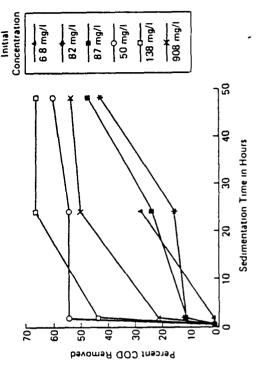


Figure 22 10 Percent COD removed vs sedimentation time (After Randall et al., 1982.)

Table 3

Design Calculation for Bag Filter

TSS (mg/L)	Flow (gpm)	Flow (L/day)	TSS captured (g/day) (assume 10% capture)	Filter capacity (2 housings) at 1 1 psi (estimated) (g)	Time between Filter Changeout (days)
35	5	27,288	96	400	4 19

Page 1

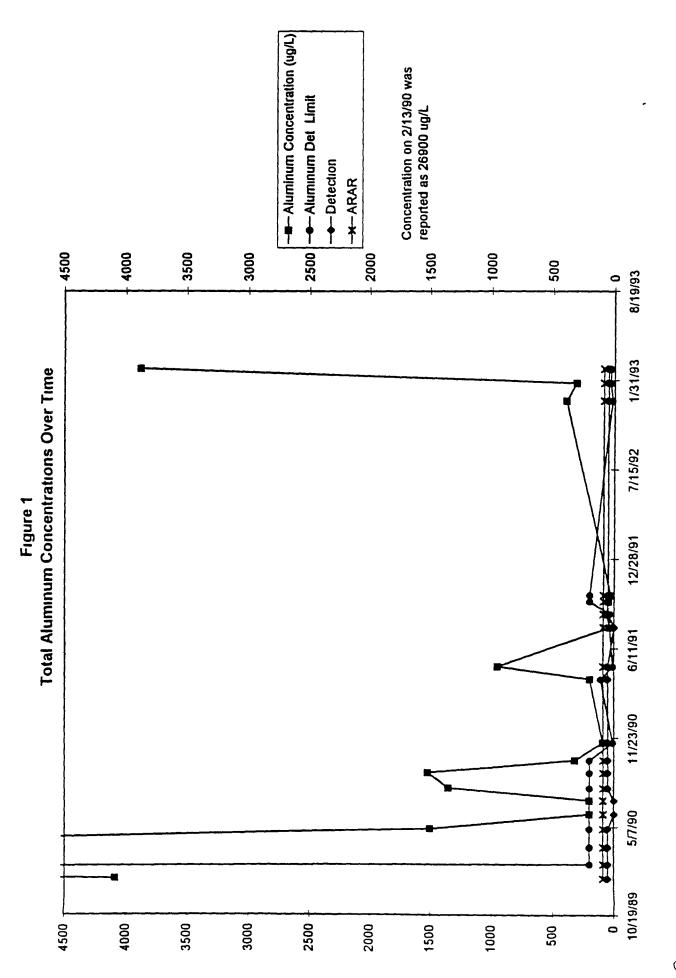
Table 4

Design Calculations for Granular Activated Carbon Usage

Compound	к	1/N	Mean Concentration (mg/L)	% Sorp	Carbon lbs/24 hours
1,1-DCA	1 790	0 530	0 006	0 012	3 03
Benzene	3 300	0 430	0 002	0 023	0 53
Chloroethane	0 590	0 950	0 022	0 002	84 03
Naphthalene	132 000	0 420	0 018	2 442	0 04
Vinyl Chlonde	0 590	0 950	0 006	0 000	78 74

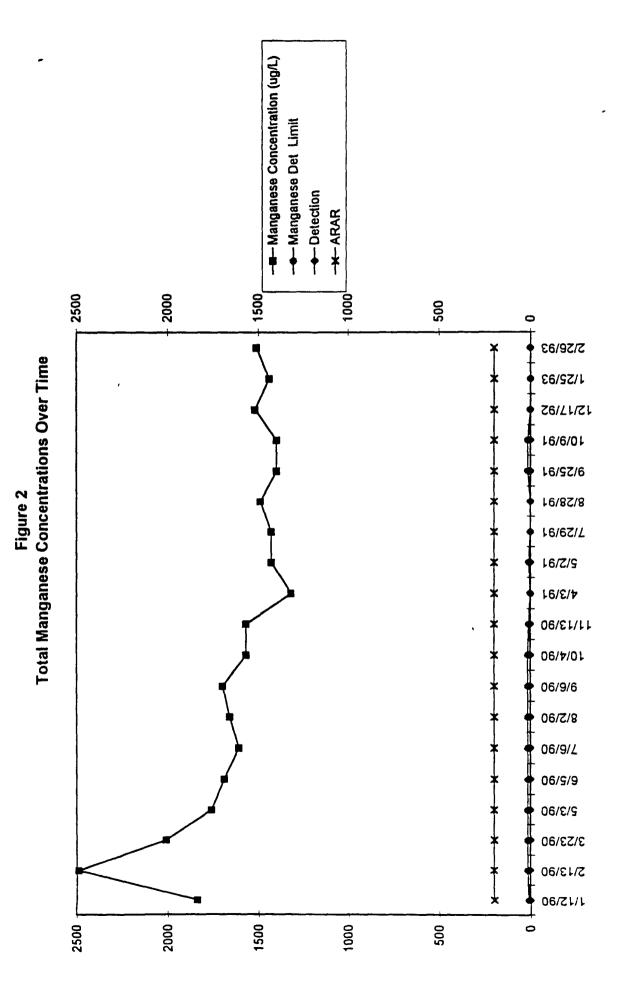
Assumptions

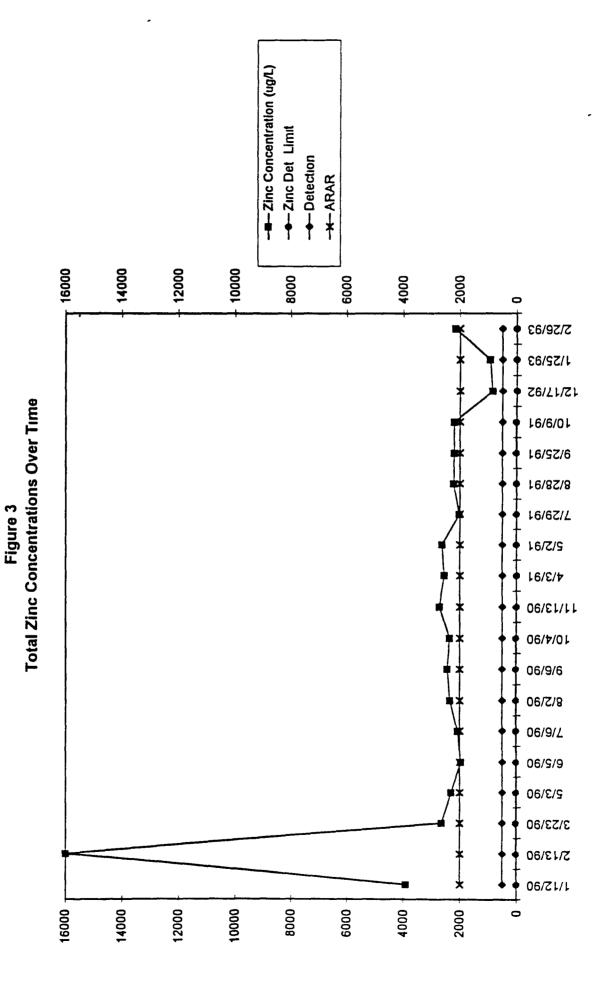
Data generated by theoretical liquid phase adsorption isotherm prediction K = intercept of adsorption isotherm with the axis (log-log plot) N = slope of the adsorption isotherm (log-log plot) System assumed to be at 70 ° F and 760 mm Hg using carbon with a pore volume of 0.70 ml/g


Flow rate is 5 gpm

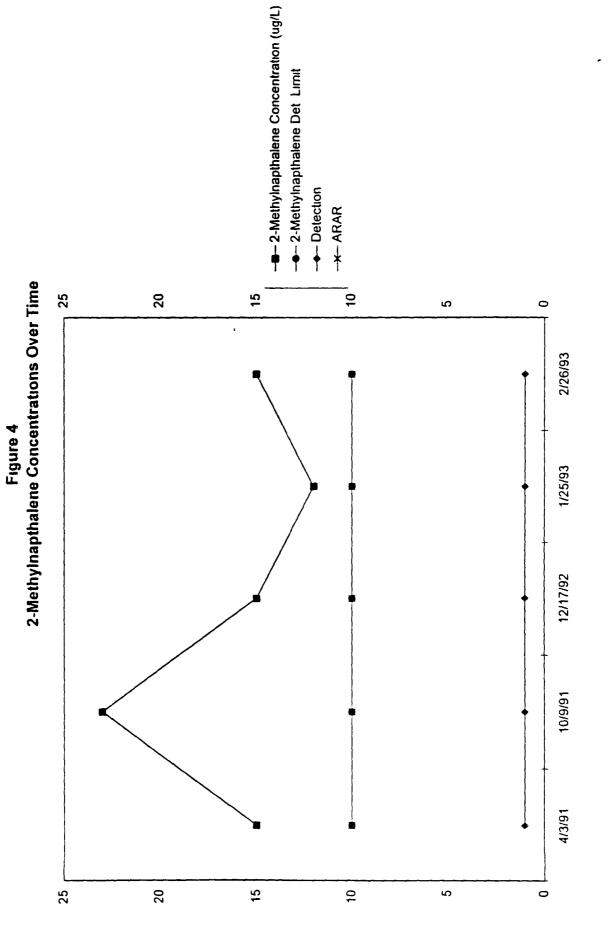
K for 2-methylnaphthalene is not available, carbon usage should be similar to that for naphthalene

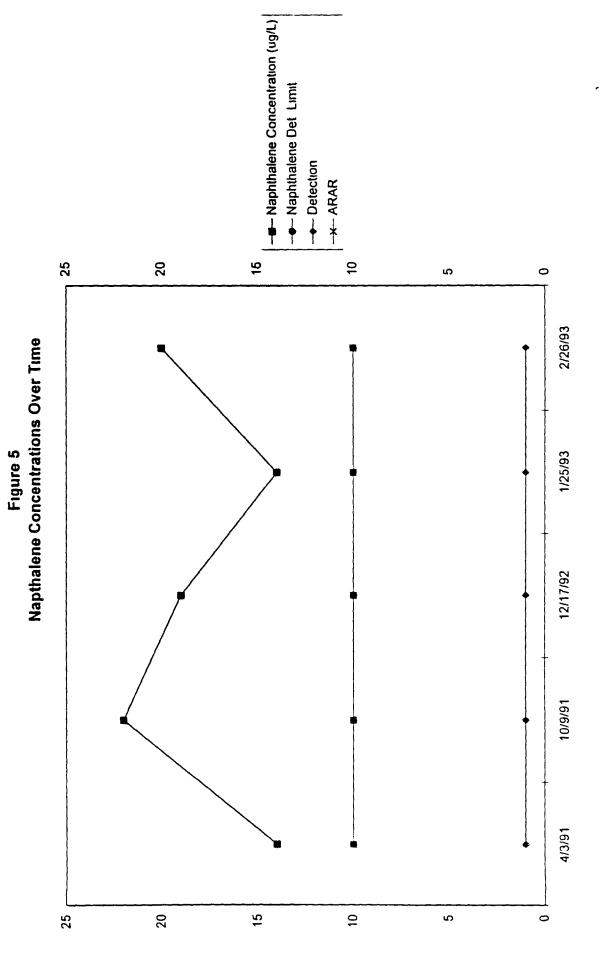
If vinyl chloride can be ignored (see text), the compound exceeding an ARAR that has the greatest carbon usage is benzene

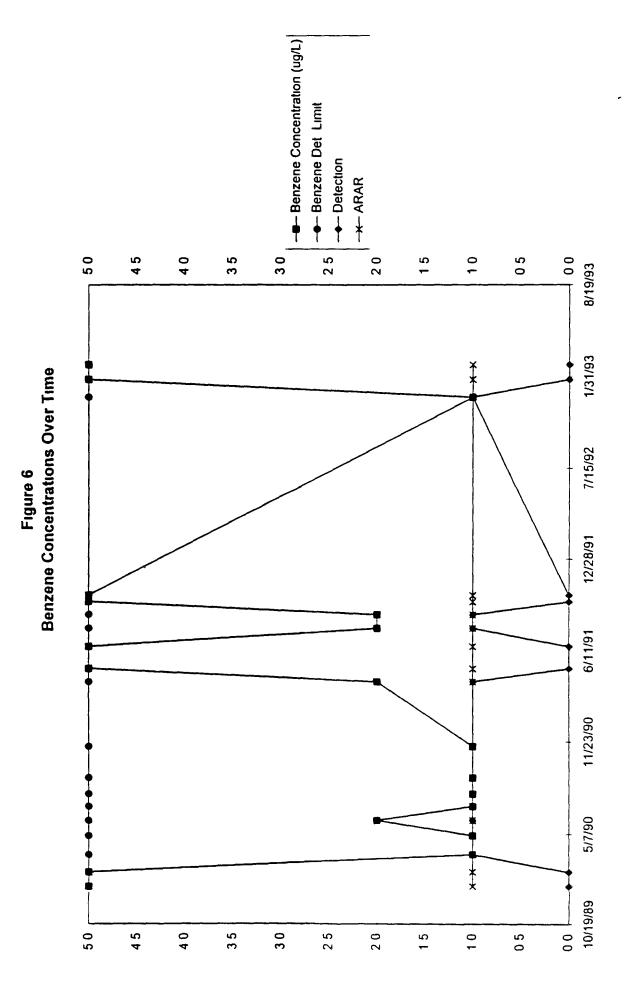

Carbon/drum			
(lbs)	(lbs/day)	Days/drum	Days/(3 drums)
200	0 53	377	1132



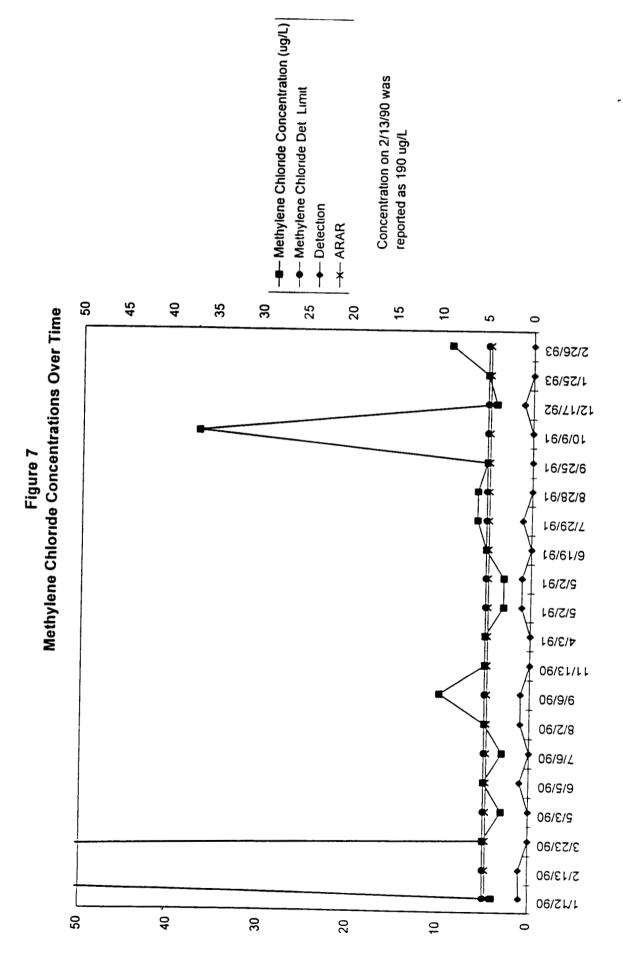
)

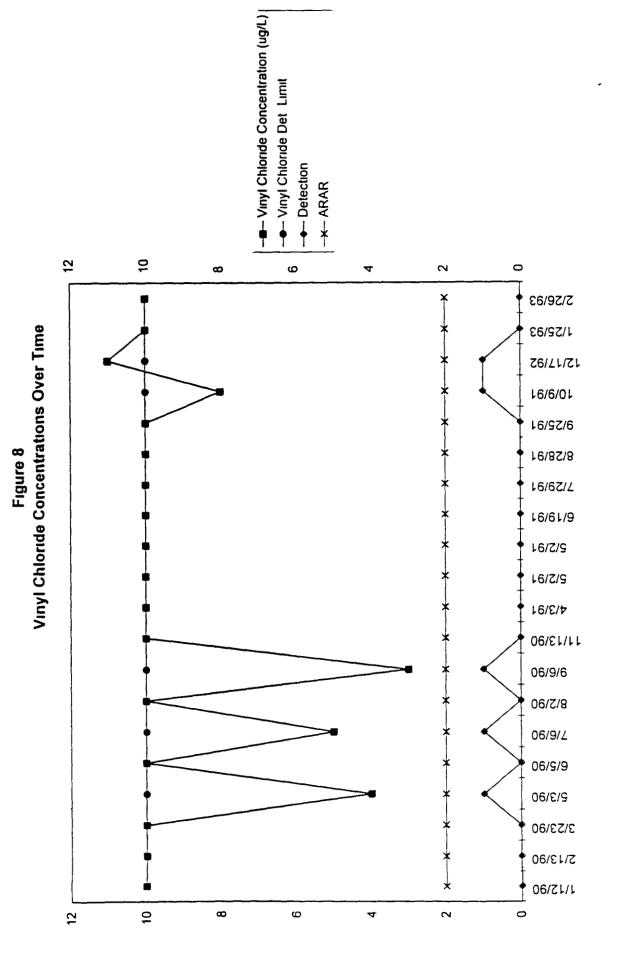

/ 8/28/95


8/28/95



)





W 7111195

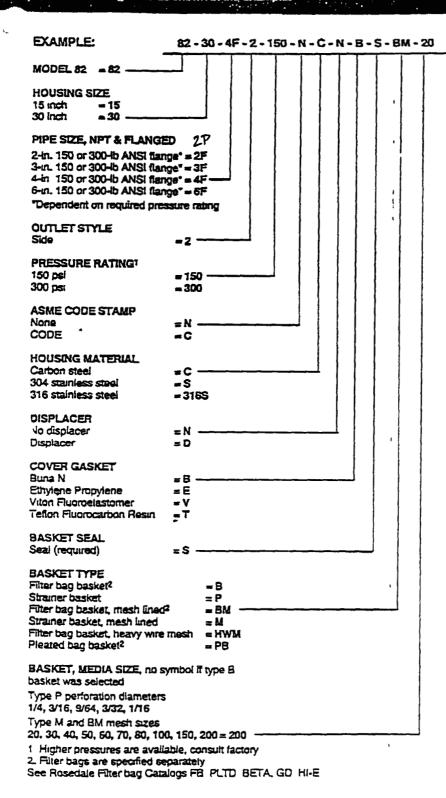
2. Product Specification Sheets for Bag Filters

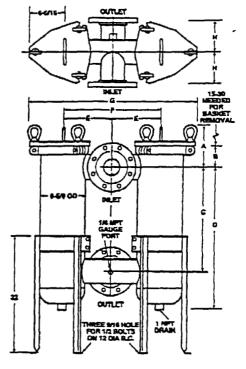
Bag filter shall be Rosedale 82-30-2P-2-150-N-S-D-B-S-B

Where

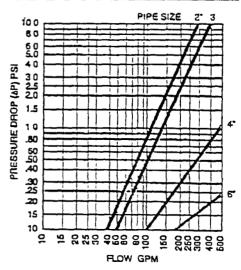
}

}


- 82 = Model 82
- -30 = 30-inch housing
- 2P = 2-inch FPT inlet and outlet
- 2 = side outlet
- -150 = 150 psi
- N = No ASME code stamp
- S = 304 stainless steel
- D = displacer
- B = Buna N cover gasket
- S = basket seal (required)
- B = filter bag basket (filter bags shall be 10 micron or 20 micron)


 \mathcal{O}

HOW TO ORDER:


Build an ordering code as shown in the example

DIMENSIONS (IN.)

Pipe Size	2	3	4	6
A	6-5/8	7-1/2	7-1/2	9
В	2-7/8	3-3/4	3-3/4	5-1/4
C (15 in) (30 m)	14-1/2 29-1/2	14-1/2 29-1/2	14-1/2 29-1/2	14-1/2 29-1/2
D (15 in) (30 m)	21-3/16 36-3/16	22-3/32 37-3/32	22 3/32 37 3/32	23-9/16 38-9/16
E	8	8	9	9
F	16	18	18	18
G	28-9/16	28 9/16	30 9/16	30-9/16
н	41/2	5 1/2	6-1/2	8

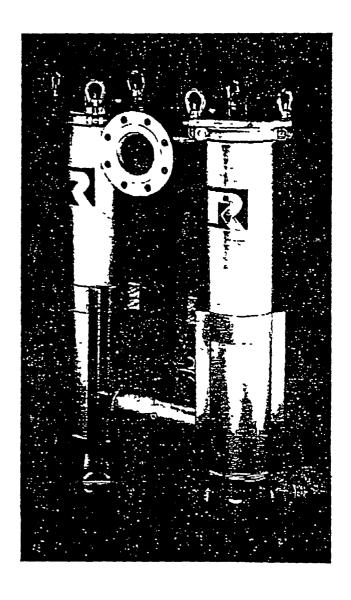
BASKET DATA (each basket, two baskets total)

"Based on housing only Fluid viscosity, filter bag used and spected dirt loading should be considered when scang a filter

ROSEDALE PRODUCTS, INC.

P.O. Box 1085 Ann Arbor, MI 48106 Tel 800-821-5373 or 313-665-8201 Fax 313-665-2214

ROSEDALE


DUAL CAPACITY BAG FILTER AND BASKET STRAINER

Extra capacity at higher flow rates!

Rosedale dual capacity housings can serve as either basket strainers or bag filters. Covers are easily removed, without tools, and the basket or bag is quickly and easily cleaned or replaced. Rosedale's bag-sized pleated cartindges will provide even greater dirt-holding capacity (see Catalog PLTD-100). Low price, greater dirt holding capacity, and higher flow rates make the Model 82 a very cost-efficient choice!

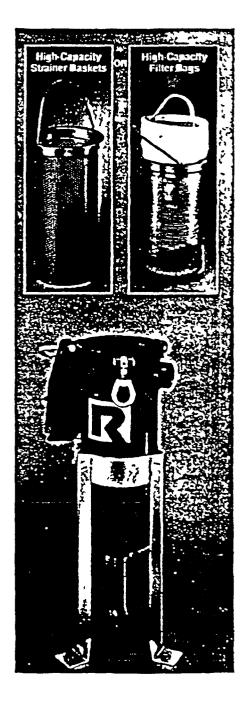
FEATURES

- For flow rates to 440 gpm
- Large-area, heavy-duty baskets
- Dual stage straining/filtering
- Low pressure drops
- · Permanently-piped housings
- · Covers are O-ring sealed
- Carbon steel or stainless steel (304 or 316) housings
- Housings are electropolished to resist adhesion of dirt or scale
- · Adjustable-height legs
- ASME code stamp available
- Liquid displacers for easier servicing
- Special options include sanitary construction, higher pressure ratings, extra-length legs, and heat jacketing

FILTRATION PRODUCTS - OUR ONLY BUSINESS

Strainers or Bag Filters: Your Choice!

Rosedale strainer/filter housings are made in many sizes, and all can serve as basket strainers (for particle retention down to 74 micron size) or as bag filters (for particle retention down to 1 micron size). In all cases, covers are easily removed, without tools, and the basket or bag is easily cleaned or replaced.

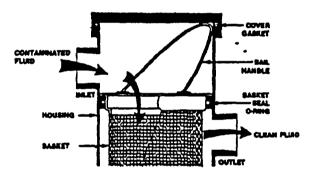

FEATURES

- · Large-area, heavy-duty baskets
- Low pressure drops
- Housings are permanently piped
- Covers are O-ring sealed
- Carbon steel, or stainless steel (304 or 316) housings
- All housings are electropolished to resist adhesion of dirt and scale
- Adjustable-height legs, standard on Models 6 and 8, optional extra on Model 4
- · Easy to clean
- · ASME code stamp for 150 or 300 psi
- Liquid displacers for easier servicing
- Special options include filter bag holddown devices, sanitary construction, different outlet connections, higher pressure ratings, extra-length legs, heat jacketing, and adapters for holding filter cartridges
- Multiple-basket and duplex units are available

Dual Stage Straining/ Filtering

All Rosedale Model 8 housings can be supplied with a second, inner basket which is supported on the top flange of the regular basket. Both baskets can be strainers (with or without wire mesh linings) or both can be baskets for filter bags. They can also be mixed, one a strainer basket, the other a filter bag basket. Dual-stage action will increase strainer or filter life and reduce servicing needs.

Covers are secured by three eyenut assemblies. One of them acts as a hinge when cover is opened. Model 4 units can also be ordered with a lighter cover, held in place with a single quick-opening clamp (shoto on cover).

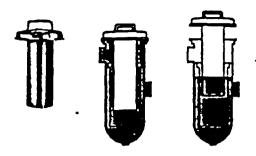

MULTI-BASKET MODELS

Larger units with multiple baskets (from 2 to 17) are also made. They can handle flows from 400 to 3500 gpm. Ask for Catalog MB.

DUPLEX MODELS

Most of the models described here are also available as duplex systems. Two units come piped together with valves to permit continuous use of either unit while servicing the other. One lever actuates all valves simultaneously. Ask for Catalog DF.

Operation



Unfiltered liquid enters the housing above the bag or basket and passes down through them. Solids are contained inside the bag or basket where they're easily and completely removed when the unit is serviced. A hinged basket ball is pushed down by the closed cover, to hold the basket against a positive so plin the housing. It helps prevent bypassing of unfiltered liquid.

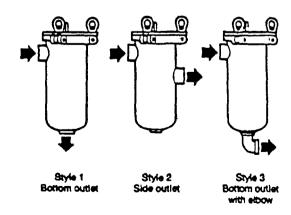
Fluid bypass around the basket is prevented by an optional O-ring seal between the basket rim and the housing ID. This seal is required on Model 8 bag filters. Model 4 and 6 bag filters don't need this O-ring because the OD of the filter bag seals against the housing itself, rather than against the ID of the basket rim

A single cover gasket is used to seal the opening, and covers can be installed and removed without tools.

Liquid Displacer Option

All strainers or filters can be supplied with a liquid displacer. When in use the displacer (a sealed 304 stainless steel cylinder) is inside the strainer basket or filter bag, displacing liquid that would otherwise fill the inner space. When the cover and displacer are removed, the level of liquid within the strainer basket or filter bag is lowered which results in less product loss, and fast, easy changes.

If the weight of the cover-displacer assembly is a concern (the heaviest, on a Model 8-30, is 20 pounds) you can easily detach the displacer


Construction Materials

All housings and other wetted parts not otherwise specified can be ordered in carbon steel 304 stainless steel, or 316 stainless steel.

Four different materials can be ordered for all seals involved

All baskets and mesh linings are made of stainless steel 304 stainless will be supplied with carbon and 304 housings, 316 stainless with 316 housings.

Convenient Piping Arrangements

Many basket options

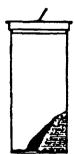
The basicsts offered will permit the straining and filtering of a wide variety of fluids, to retain solids of almost any size.

All baskets are easily removed and cleaned. All are made in depths to suit the housing selected.

Plain perforated strainer basket.


Choose from the following perforation sizes: 1/4, 3/16, 9/64, 3/32, and 1/16 Inch.

Perforated strainer basket with wire mesh linings.


High quality wire is used, in mesh sizes 20, 30, 40, 50, 60, 70, 90, 100, 150, and 200.

Filter bag basket.

They have 9/64-in,-diameter perforations, for a 51 percent open area. They accept standard size filter bags (see Rosedale Catalog FB)

SINGLE-STAGE BASKETS
(all models)

Single-stage perforsted strainer basist, with or without wire mesh

Single-stage filter bag, within perforsted basket. Can also be wire mesh lined, or be made entirely of heavy wire mesh

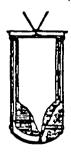
Dual-etage straining can be done with two perforated strainer baskets, with or without wire meeh linings.

Choosing a basket strainer or bag filter

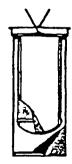
Once the choice between straining a fluid (removing particles down to 74 micron size) and filtering it (removing particles down to one micron) has been made, the choice of which size Rosedale model must be made. All three models (4, 6, and 8) and the basists and bags that go in them, are of the same basic design. They differ in dimensions, capacities, maximum pressure ratings, and pipe size. Selection is based on these variables.

PRESSURE DROP DATA

Basket strainers and bag filters are usually selected so that the pressure drop does not exceed 2 psi, when they are clean, Higher pressure drops may be tolerated when contaminant loading is low.


The pressure drop data is accurate for all housings with strainer or filter bag baskets. When filter bags are added, total pressure drop becomes the sum of the pressure drop as determined by the steps below plus the pressure drop through the bag as defined in Rosedale Filter Bag Cstalog FB.

Follow these easy steps:


- Using the desired pipe size and approximate flow rate, determine the basic pressure drop from the appropriate graph
- Multiply the pressure drop obtained in step 1 by the viscosity correction factor found in the accompanying table. This is the adjusted (clean) pressure drop for all baskets, without filter bags.

		Vissorty spe 1 50 100 200 400 500 1000 1000 2000							
	n, e	50	100	200	444	546	-	1900	2000
All unless baskets	ZS.	爲	1 80	1 10	1.20	140	1,50	1,50	1.80
40-mask lened	נג	.95	1.20	140	1.50	1,10	130	2.00	2.30
80-mesh kend	37	1.80	130	1 50	1 70	2 10	2.20	2.30	2.30
\$5-mash (sned	33	1.20	1.50	1 10	2.10	2 40	2.80	2 80	2 55
100-mesh bred	1.90	1,30	1.60	2.20	2 40	270	3.00	3.30	4 40
200-mesh hand	1,30	170	210	1.00	1.40	3.30	4 40	\$.00	6.30


TWO-STAGE BASKETS (Model 8 only)

Both inner and outer filter bags in this dual-stage configuration can be of the throw-away or cleanable type.

A filter bag within a wire meeh-lined outer basiset. Mesh is backstop if bag ruptures or is missing.

A perforated strainer basket (with or without wire mesh linking) inside a filter bag gives effective dual-etage straining-filtering

The following model descriptions and flow tables can be used to aid in selection, and make comparisons between the various styles.

Model 4—For flow rates to 50 gpm

- Pipe sizes 3/4 thru 3-inch, NPT or flanged
- . Two basket depths: 6 or 12 Inches (nominal)
- Three pressure ratings: 200 psi (with clamp cover) and 300 or 500 psi (with eyenut cover)
- ASME code stamp available

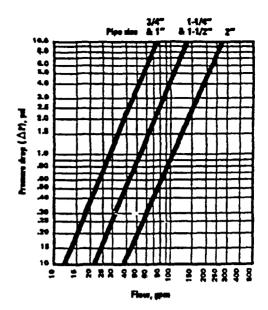
BASKET DATA

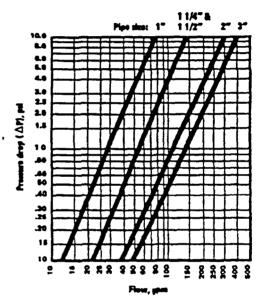
Depth Nominal (Inches)	Diameter (inches)	Arriage Area (eq. R.)	Volume (ou. in.)
6	3.9	0.5	65
12	3.9	1.0	130

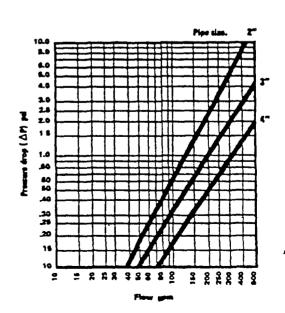
Model 6—For flow rates to 100 gpm

- Delivers 3.4 square feet of basist or bag surface area without need for ASME code construction
- Can be fitted with cartridge filter element adapter
- Pipe sizes 3/4 thru 4-inch, NPT or flanged
- . Three basket depths: 12, 18 or 30 inches (nominal)
- Two pressure ratings: 150 pci or 300 pci
- ASME code stamp available

BASKET DATA

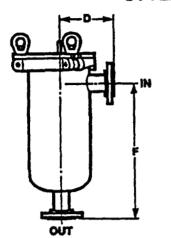

Depth Nominal (Inches)	Diameter (Inches)	Surface Area (eq. R.)	Volume (cu. in.)	_
12	6	1.3	235	_
18	5	20	350	•
30	5	3.4	630	_

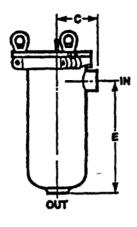

Model 8—For flow rates to 220 gpm


- Can be fitted with an adapter to hold cartridge filter elements
- Pipe sizes 3/4 thru 4-inch, NPT or flanged
- Two basket depths. 15 or 30 Inches (nominal)
- Two pressure ratings: 150 or 300 pei
- ASME code stamp available.

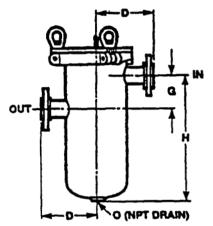
BASKET DATA

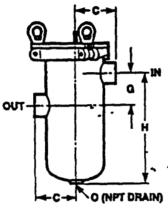
Depth Nominal (Inches)	Diameter (Inches)	Surface Area (eq. ft.)	(ou in)	
15	6.7	2.3	500	
30	6.7	44	1000	

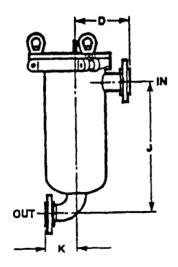

OUTLET STYLES

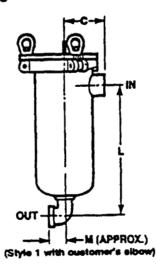

COVER TYPES

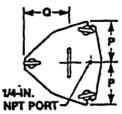
FLANGED (150 Ib. ANSD

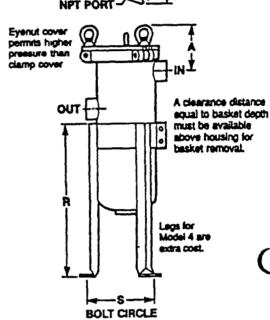

THREADED (NPT)

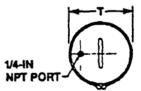

STYLE 1

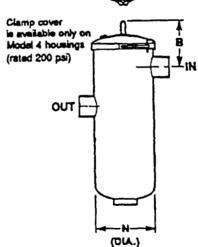



· STYLE 2




STYLE 3

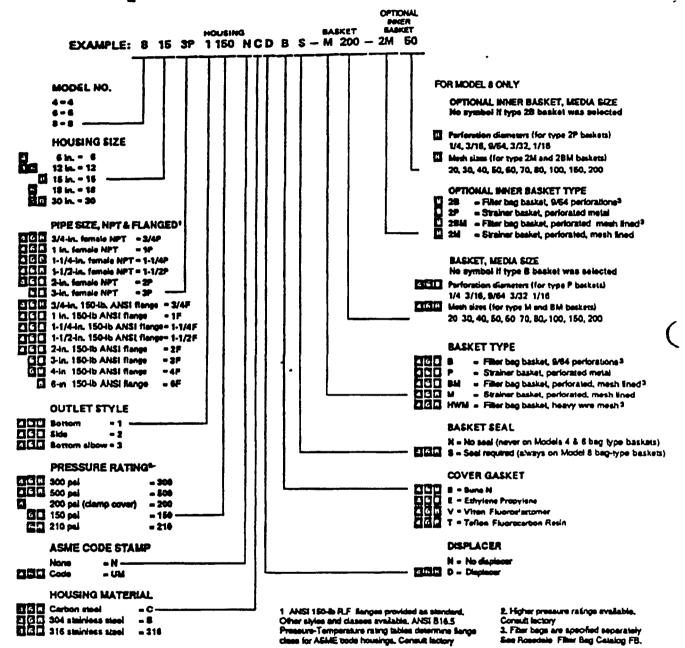



EYENUT COVER

CLAMP COVER

DIMENSIONS (IN)

Model	Pipe Size	A	8	C	۵	E	F	G	H	3	K	L	u	M	°	P	٥	R	S	T
4-6	3/4	5.5	5.2	3.5	50	101	12.0	30	10 1	104	40	11.2	1.3	4.5	1/2	35	36	140	68	5 6
	1	5.5	5.2	3.5	5.0	10.1	12.0	30	10 1	10.9	4.0	11.5	1.5		Ì			- 1	- 1	
l	1-1/4	6.0	5.8	3.5	50	94	12.0	4.3	9.5	10.0	40	111	1.8		1			1	1	
1	1-1/2	6.0	5.8	3.5	50	9.3	12.0	4.3	9.5	10.8	40	11.3	2.0						- }	
	2	6.0	5.8	3.5	50	9.3	12.0	4.3	9.5	11.8	4.0	11.8	2.3							
4-12	,3/4	5.5	5.2	3.5	5.0	16 1	180	30	16 1	16 4	1	17.2	1.3	4.5	1/2	3.5	3 6	140	68	5 6
	1	5.5	5.2	3.5	50	161	180	3.0	16 1	169	40	17.5	1.5	1			1			,
	1-1/4	6.0	5.8	3.5	5.0	15 4	18.0	4.3	15.5	16.5	4.0	171	18							ı
	1-1/2	6.0	5.8	3.5	50	15.3	180	4.3	15.5	16.8	40	17.3	2.0	1					1	
	2	50	58	3.5	50	15.3	180	4.3	15.5	17 6	40	17.8	2.3	_						
6-12	1	6.1		4.3	60	17.3	19.8	43	17.3	18 1	50	186	1.5	60	3/4	50	5.3	180	95	
	1-1/4	61		4.3	60	17.3	19.8	4.8	17.3	184	50	190	1.8							
	1-1/2	6.1	NA	4.3	60	17.3	19.8	4.8	17.3	188	50	19.3	2.0		'					NA
	2	61		4.3	60	17.2	197	4.8	17.3	196	50	197	2.3							
	3	70		4.3	60	18.2	20 7	8.6	18.2	22.0	4.8	21 9	31	_						
6-18	1	61		4.3	60	23.3	25 8	4.3	23.3	24 1	50	24 6	1.5	60	3/4	50	5.3	180	9.5	
	1-1/4	61	1	4.3	80	23.3	25.8	48	23.3	24 4	50	25 0	18				}			l
	1-1/2	61	NA	4.3	60	23.3	25.8	48	23.3	24.8	50	25.3	2.0					-		N/
	2	-61		4.3	6.0	23.2	25 7	4.8	23.3	25 8	50	1	1	}					1	
	3	70		43	60	24.2	28 7	6.6	24.2	28.0	4.8	27 9	31	_	_	_	↓		_	L
6-30	1	55		4.3	60	35.2	37.8	4.5	35.3	36 1	50	36 6	1.5	60	3/4	50	5.3	180	9.5	
	1-1/4	60	1	4.3	60	35.2	37.8	4.4	35.3	36 4	50	37 0	1.8							
	1-1/2	61	NA	4.3	80	35.2	37.8	41	35.3	38.8	50	37.3	1	1					1	N.
	2	81	1	4.3	80	35.2	37.7	41	35.3	37 6	- (- 1	1			1				
	3	70		43	6.0	36.2	2 38 7	6	36.2	400	48	39 8	31		_	-	 	<u> </u>	 	_
8-15	2	6 6		59	7.5	20	23.5	5 4.	B 21 (1	1	١ .)	8 6	1	5 8	6.3	22 0	12.0	ł
	3	74	NA	68	7.5	21	7 24 6	6.	6 21.	25.	4.6	í	- (N
	•	74	•	6.8	8	21.	5 25	8	4 21	28 (8.5	27 (3.5				_		_	_
8-30	2	6.6		5 9	7.5	35	9 38.		8 36.	1	1	3	- (1	3 1	5	B 63	220	120	
	3	74	יא ו	88	ł		7 39	- 1	6 36	1	- 1	B 40.	- 1	- 1						N
	4	74	•	88	8	B 38.	5 40	1 8	4 38	9 41.	B 6.	3 42	8 3.4	3	1		1	1	1	1


7

PAGE 008

HOW TO ORDER

Build an ordering code as shown in the example. Each option is available only on the model sizes indicated in the colored blocks preceding its description.

Key to blocks: [2] - Model 4 [3] - Model 6 [5] - Model 6

ROSEDALE PRODUCTS, INC.

Box 1085, Ann Arbor, MI 48106 Tel 313-665-8201 Fax. 313-665-2214

Casalog 468-3 124M580 Litro in USA

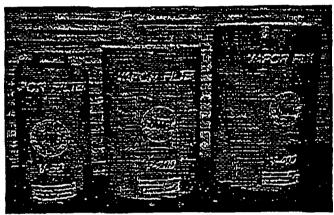
AUG 8 '95 16 15

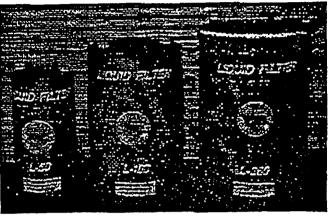
3832887843

PAGE 009

3. Product Specification Sheets for Granular Activated Carbon Drum Filters

PRODUCT




BULLETIN

DISPOSABLE DRUM FILTERS

VAPOR PHASE

LIQUID PHASE

The NWC line of disposable adsorption drum filters are constructed of heavy duty steel or rugged Poly casings Activated carbons by NWC are effective and economical in the removal of organic contaminants for both liquid and vapor phase applications Each canister is D O T approved as a transport container

to TSD facilities for regeneration/disposal Uses include small spills, pilot and step tests, low volume pump and treat, discharge permit compliance, small remediation projects, emergency response, mobile units standby preparedness and many others NWC provides complete pick-up and disposal services

V-50	V-200	V-400	SPECIFICATIONS	L-50	L-180	L-360
12 PSI	12 PSI	12 PSI	Working Pressure, Max	12 PSI	12 PSI	12 PSI
75 CFM	100 CFM	300 CFM	Flow Rate, Max	7 GPM	10 GPM	20 GPM
<15"	<15"	< 15"	Δ P (In H ₂ O @ 70 °F)	<10"	< 5'	< 15"
No	Yes	Yes	Steel Casing -	No	Yes	Yes
Yes	Yes	No	Poly Casing	Yes	Yes	No
N/A	Epoxy	Epoxy	Lining (Steel)	N/A	Εροτγ	Epoxy
50 lb	200 lb	320 lb	Carbon Fill Volume	50 lb	180 lb	360 lb
2" NPT	2" NPT	4" NPT	In/Out Connections	2" NPT	2" NPT/com	2" NPT
22"	36"	38"	Height	28"	36"	38"
16"	24"	27"	Diameter	167	24"	27"
57 lb	250 lb	420 lb	Shipping Weight (dry)	58 lb	230 lb	420 lb
114 lb	500 lb	920 lb	Shipping Weight (Wet)	116 lb	460 lb	840 lb

6/20/95

S.M. STAHLER

PROJECT:

PROJECT LOCATION COLORADO

ATTN' GREG MEEKER

THE FOLLOWING DATA HAS BEEN GENERATED BY THEORETICAL LIQUID PHASE ADSORPTION ISOTHERM PREDICTION. THE CARBON CAPACITIES (TO SATURATION) HAVE BEEN USED TO COMPUTE THE CARBON EXHAUSTION RATE IN LB/24 HR DAY FOR A SYSTEM AT JOF 760 mm Hg USING A CARBON WITH A PORE VOLUME OF 0.70 ml/g.

THE FLOW RATE IS 5 GPM

COMPOUND	κ	1/N	PPM	≈ 30RP	CARBON LB/24 HR
CHLORETHANE	0.570	0.950	0.022	0.002	84.03
VINYLCHLORIDE	0.590	0.950	0.006	0.000	78.74
NAPHTHALENE	132.000	0.420	0.018	2.442	0.0
1,1 DCA	1.790	0.530	0.006	0 012	3.6
BENZENE	0.300	0.430	0.006	0 023	0.53

TOTAL AMOUNT OF CARBON USED IN 24 HR 166 367

IF YOU HAVE ANY QUESTIONS PLEASE GIVE ME A CALL

BEST REGARDS.

5/1c. 28-32 16/43

1/3

9165270544

POCE ON

4. Design Calculations for Head Loss in Pipes

OLI 7 Passive	Collecti	on and Tre	atment S	ystem Head Loss	
CO / Fassive	Collecti	Oli allu Tie	atiment 3	ystem riead 2003	
Flow rate, Q, gpm	5	1			
Pipe inner diameter (inches)	2				
Roughness Coefficient, C	140				
Length of pipe in System, not including filter	s or GAC dr	ums			
		Equivalence in Feet	_		
	Each	(ft/each)	Feet		
Double containment pipe, straight (ft)			12		
Flexible Pipe (ft)	L		24		
Single containment pipe, straight (ft)			10		
45 deg Elbows	2	4 3	86	Asahi/America, Inc. Engineering Design Guide	
Equivalent 90 deg Elbows (each bend in]				
flexible pipe figured as 90 deg_elbow)	13			Asahi/America Inc Engineering Design Guide	
Tee, straight flow	4	3	12	Asahi/America, Inc. Engineering Design Guide	
Bali Valve	1	1	1		
Total Equivalent Length of 2" Pipe (ft)			197 6		
Hazen and Williams Formula Head Loss, h = 0 2083 ° (100/C) 1.85 ° (q185	/ d ^{4 87})				
Where	 	<u> </u>	· · · · · · · · · · · · · · · · · · ·		
h = head loss due to fnction (ft of water / 10	00 ft of pipe)			
C = roughness coefficient		1			
q = flow rate (gpm)	 			<u> </u>	
d = inside diameter of pipe (inches)					
Head Loss per 100 ft, h (ft) in 2-inch pipe	0 075064	per 100 ft			
Head Loss, h (ft) in 2-inch pipe	0 148		L		
Head Loss in GAC Drum (2 inch/drum)	0 500	[n, Northwestern Carbon, (714)252-8555 (David Herman), 6/23/95	
Head Loss in Clean Filter (0 1 psi)	0 231	Telephone conversation Northwestern Carbon, (714)252-8555 (David			
Total Head Loss in System (clean) (feet)	0 879				

5. Assumed Soil Loadings

dSI

MEMORANDUM

Lo.

Project File

From:

Kieth Fiebig, S.M. Stoller

Subject:

Assumed Soil Loadings for Seep Collection and Treatment System, OU7

RFETS

Date:

September 12, 1995

We do not have actual field geotechnical data for site conditions; however, we are assuming field conditions.

- Active Lateral Earth Pressure

52 pcf

- Surcharge from hillside, construction

and operational loads

125 psf

- Soil Compacted Dry Unit Weight

105 pcf

- Soil Compacted Wet Unit Weight

120 pcf

Attached are the calculations for the active earth pressure.

References:

Foundation Engineering Handbook, edited by Hsai-Yang Fang, 2nd Edition, 1990

1/1

	03 > 0	DATE
toller	JOB NYY	
	77() (7')	RIVIEWED
	SHEFT NOOF_	·
Active lateral Earth	Presures	
Z=7'	c= 105,cf ceff. = 0.49 theress (Table 6.2)	Ta = .49×/05×7 = 760 psf
1 A V Z	ompacted 5,1+	Pa = 1260 pH
-	rarth slope 4=0	51.5 pct/
'0	it sing $\beta=0$ $\hat{c}=0$	
0 . 1	= 420 + 50 = 47	o pst-
Jeg = 60 po+ (2	ompote sult)	or 67 pct equivalent
$Z=\overline{\tau}$ $k=0.5$ (love)	l'Anchefill, urcharge pressure)	fluid
35 = 100 pst (54	ircharge presure)	L-weight

Foundation Engineering tandiscotiand Ed, edited by Hsai-Yang Fang, 970

61 AT-REST LATERAL PRESSURES

At-rest pressures exist in level ground, and develop under long-term conditions as the soil is deposited and acted upon by changes in the loading environment as caused by erosion, glaciers, and physicochemical processes. At-rest pressures rigorously only apply for walls that are placed into the ground with a minimum of disturbance and that remain unmoved during loading, or for unmoving, frictionless walls with a backfill placed with a minimum of compactive effort. In practice such conditions are rarely achieved. However, at-rest pressures are still useful in design as either a baseline against which other pressure states can be judged or as an assumed conservative choice for the design loading.

At-rest effective lateral pressures are often assumed to follow a linear distribution (Fig. 62), with the effective lateral pressure σ_x taken as a simple multiple of the vertical effective pressure σ'_x

$$\sigma_x' = K_0(\sigma_x') \tag{61}$$

In homogeneous, dry soil with a constant K_0 and unit weight, both the vertical and lateral pressures are linearly distributed. With the presence of a water table, the at-rest pressure distribution exhibits a break in slope at the water table, reflecting the use of submerged unit weights to determine vertical effective stresses (Fig. 62)

Our early concepts of the parameter K_0 were formed on the basis of normally consolidated soils Jaky (1944) proposed a relationship between K_0 and the drained friction angle ϕ' for normally consolidated soils

$$K_0 = 1 - \sin \phi' \tag{62}$$

Numerous studies have confirmed the general validity of this empirical equation (Brooker and Ireland, 1965, Mayne and Kulhawy, 1982) However, results from laboratory experiments and in-situ tests have shown that the K_0 value also varies as a function of overconsolidation ratio (OCR) and stress history. For the case of a soil that has been subjected to one or more cycles of unloading, Schmidt (1966) proposed that K_0 can be determined as a function of its value in the normally consolidated state using the relationship

$$K_{0u} = K_{0uc}(OCR)^u \tag{63}$$

in which K_{0w} is the coefficient for unloading, K_{0wr} is the coefficient for the normally consolidated soil, and α is a dimensionless coefficient Experimental data have confirmed this relationship, and Mayne and Kulhawy (1982) showed that, for most soils, α can be taken as $\sin \phi'$

Soils that are overconsolidated and are in the process of being reloaded pose a difficulty in that Equation 63 does not apply For this condition, a more complex equation is needed as well as a full knowledge of the stress history of the soil (Mayne and Kulhawy, 1982) For practical purposes, it may

TABLE 6 1 TYPICAL COEFFICIENTS OF LATERAL EARTH PRESSURE AT REST

	Coefficient of Lateral Earth Pressure						
Soil type	OCR = 1	OCR = 2°	OCR = 5°	OCR = 10			
Loose sand	0 45	0 65	1 10	1 50			
Medium sand	0 40	0 60	1 05	1 55			
Dense sand	0 35	0 55	1 00	1 50			
Silt	0 50	0 70	1 10	1 60			
Lean clay CL	0 60	0 80	1 20	1 65			
Highly plastic clay CH	0 65	080	1 10	1 40			

^{*}Unloading cycle

be enough to know that the K_0 during reloading falls about halfway between that for unloading and normally consolidated conditions. Also, K_0 might be directly determined through in-situ testing methods.

Table 6 1 presents typical values for K_0 for a subset of soils For other conditions, K_0 values can be determined directly from Equations 62 and 63, and/or using in-situ testing techniques.

Because the K_0 value in a given soil often varies with depth, and the soil types themselves may change with depth, the at-rest lateral pressure distribution is typically not linear as shown in Figure 6.2. Self-boring pressuremeter tests in clays with overconsolidated profiles induced by desiccation have demonstrated that the K_0 under such conditions decreases with depth in the soil deposit and reaches a steady state where the desiccation effects are no longer present (Clough and Denby, 1980)

6 2 ACTIVE AND PASSIVE LATERAL EARTH PRESSURES

Most walls move, either by global shifting or by local deformations. These movements cause adjustments to occur in the earth loads and the pressure distributions. Conventional means for assessing the effects of system movements are to set them into the context of extreme conditions. These are referred to as the active and passive earth pressure loadings.

621 Active Pressure

Assuming that a gravity wall with no friction on its face is translated away from a soil mass that is initially at the at-rest condition then the soil mass adjacent to the wall will pass into a failure state as shown in Figure 6.3. At this stage, the

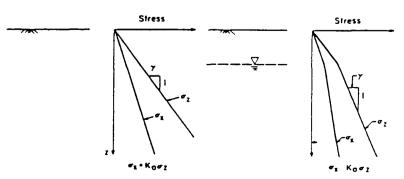
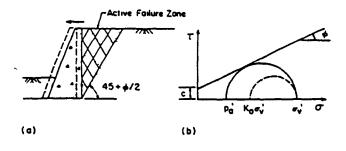



Fig. 6.2. At rest earth pressure distribution—homogeneous soil

1/0

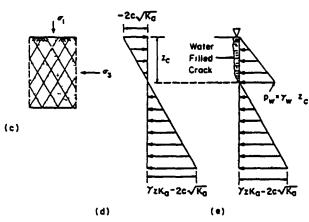


Fig 6.3 Active pressure—frictionless wall (a) Frictionless wall moves away from backfill (b) Stress state in active failure (c) Active failure zone (d) Theoretical active pressure distribution (e) Waterfilled crack in tension zone

il fails with the vertical stress unchanged from its original value, but with the lateral pressure decreased to a minimum value that can be defined using the Mohr-Coulomb failure criterion. The minimum lateral pressure is known as the active pressure; and denoted by the symbol p. It is desirable to reach this condition if possible, since it reduces the amount of load that the wall will have to carry while allowing the soil to share in the load-bearing process

For the frictionless wall with a level backfill, the active pressure can be calculated from the geometry of the Mohr diagram in Figure 63 by the equation

$$p_a = k_a \gamma z - 2c \sqrt{k_a} \tag{64}$$

where $k_a = \tan^2(45^\circ - \phi/2)$, and is referred to as the active pressure coefficient. Other terms are y, the unit weight, ϕ , the friction angle c the cohesion, and z, the depth below the ground surface. The distribution of active pressure as shown in Figure 63 is linear. If the soil has a cohesion component the soil is in a state of tension of a depth of $2c/\gamma \sqrt{k_a}$. Ordinarily it should not be assumed that this portion of the diagram will act on a wall but rather that a tension crack will form to this depth and fill with water which then exerts a positive pressure on the wall

Equivalent Fluid Unit Weight If the backfill is composed of cohesionless soil as is often the case, then the active earth pressure equation reduces to

$$p_a = k_a yz \tag{6.5}$$

is can also be written as

$$\gamma_{\bullet} = \gamma_{\bullet \bullet} z \tag{6.6}$$

where the term yet is known as the equivalent fluid unit weight for active pressure loading, and equals kay. This term is often used in design and it should be realized in using it that the simplifying assumptions used in the derivations of this point are also incorporated in the equivalent fluid unit weight concept

Surcharge and Nonhomogeneous Conditions Design conditions often call for incorporation of a surcharge on the ground surface adjacent to the wall. In the case of a frictionless wall, the active pressure due to soil weight and surcharge, as shown in Figure 64, can be calculated using the equation

$$p_a = k_a (\gamma z + q_s) \tag{67}$$

where q_s is the surcharge pressure.

Where a water table is situated above the bottom of the wall, or the soil involved is nonhomogeneous, Equations 64 and 67 can be used if the proper allowance is made for the submergence effect and the changing properties for the soil layers Figure 6.5 illustrates these considerations for cohesionless

Force Polygon Solution for Active Loadings The equations presented to this point are limited to consideration of relatively simple conditions. More complex conditions can be included using a force polygon analysis based on assumed kinematic failure mechanisms developing in the soil. One of the more important conditions that can be considered in this way is the case of friction developing between the wall and the soil as a result of relative movements between them. Figure 6 6 illustrates this situation for the case of a wall translating away from a homogeneous soil

Assuming a straight-line failure surface in the backfill as the wall moves away from the soil, the equilibrium of the soil wedge bounded by the wall and the backfill failure surface can be examined in the force polygon in Figure 6.6. The force E required to maintain equilibrium is exerted by the wall. In the most general situation, the critical value of the force between the wall and the soil is found by working with trial slopes of failure wedge until the maximum value of the stabilizing force E is obtained

For relatively simple conditions where the soil backfill is level and the wall face is vertical, the inclination of the failure surface in the soil that yields the minimum earth loading is $45^{\circ} + \phi/2$ to the horizontal Under these conditions, if wall friction is zero, then the kinematic force polygon procedure yields the same answer for the active load as Equation 6.4 If the wall friction is positive in the sense shown in Figure 66 then the active loading for most cases is slightly reduced from the case of no friction. More importantly, the vertical shear

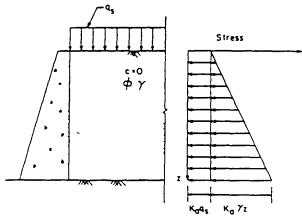


Fig 6.4 Frictionless wall with surcharge

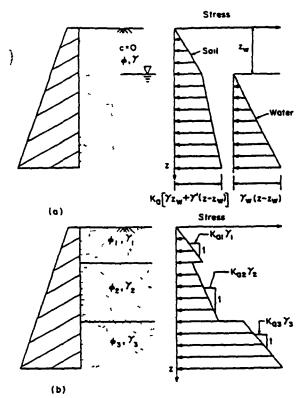


Fig. 6.5 Active pressures for frictionless wall in presence of groundwater table and nonhomogeneous soil conditions. (a) Groundwater table (b) Nonhomogeneous cohesionless soil

bree that is generated helps to combat overturning and increases the resistance against sliding of the wall

A general formula can be developed for active earth load acting on a wall for the case of a homogeneous soil backfill with arbitrary degrees of wall friction, wall slope, and backfill surface slope Assuming that the failure surface in the backfill is a straight line, the formula is as shown in Figure 6.7 In the

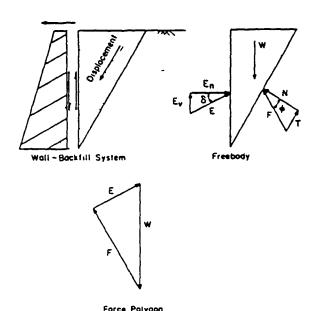


Fig. 6.6. Force polygon solution for active loading

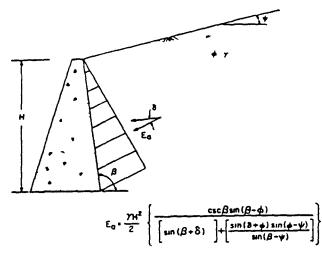


Fig. 6.7. Closed-form solution for active earth loading, rough wall sloping wall face, and backfill

event of relatively complex backfill or wall geometries or surcharge conditions, then the exact failure surface that yields the minimum earth load can be found by a trial procedure. A number of references describe this process, and examples can be found in the original edition to this handbook.

Further Comments on Active Load Determinations The kinematic analysis in Figure 6 6 assumes that the failure surface is a straight line. In fact, in the most general case of a soil whose failure is governed by a Mohr-Coulomb criterion, and which has a friction component, the correct failure surface under active conditions consists of a log spiral, as shown in Figure 6.8. However, in the active state, the log-spiral shape is reasonably approximated by a straight line, and the resultant load predicted using the simple straight-line failure mechanism is within 10 percent of that obtained with the more exact log-spiral mechanism.

Table 6.2 presents values for the active pressure coefficient that allow calculation of the active loading resultant as shown for conditions where wall friction, sloping backfill and a sloping wall face exist. These coefficients are based on the log-spiral failure surface assumption. A graphical format for the active pressure coefficient from the log-spiral analysis that is useful for many practical problems is given in Figure 6.9. It assumes a vertical wall face and horizontal backfill. For conditions encountered that deviate from those described in Table 6.2 or in Figure 6.9, the trial procedure can be used assuming straight-line failure surfaces in the soil.

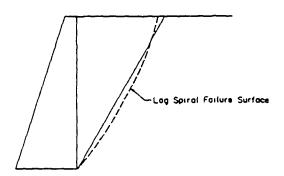
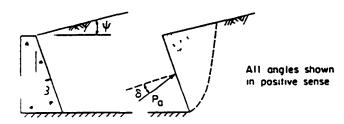



Fig. 6.8. Comparison of log-spiral and straight, line failure surfaces for active conditions.

	<i>y</i>	β			φ	deg		
deg	deg	deg	20	25	30	35	40	45
		-10	0 37	0 30	0 24	0 19	014	0 11
	-15	0	0 42	0 35	0 29	0.24	0 19	0 16
		10	0 45	0 39	0.34	0.29	0.24	0.21
		-10	0 42	0 34	0 27	0 21	016	0 12
0	0	0	0 49	0 41	0 33	0 27	0 22	0 17
		10	0 55	0 47	0 40	0.34	0.28	0 24
		-10	0 55	0 41	0 32	0 23	017	0 13
	15	0	0 65	0 51	0 41	0 32	0 25	0.20
		10	0 75	0 60	0 49	0 41	0 34	0.28
		-10	0 31	0 26	0.21	0 17	0 14	0 1 1
	-15	Ö	0 37	0.31	0.26	0 23	019	0 17
		10	0 41	0.36	0.31	0 27	0 25	0.23
		-10	0 37	0 30	0.24	0 19	0 15	0 12
φ*	0	0	0 44	0.37	0 30	0.26	0 22	019
•		10	0 50	0 43	0 38	0.33	0 30	0 26
		-10	0 50	0.37	0.29	0.22	0 17	014
	15	0	0 61	0 48	0 37	0.32	0 25	0.21
		10	0 72	0 58	0 46	0 42	0 35	0 31

*After Caquot and Kensel (1948)

6 2 2 Passive Pressures

Passive pressure conditions develop where a structure is forced into a soil mass. This situation is most commonly associated with the soil located on the opposite side of the wall from the backfill (Fig. 6.10). Assuming that a frictionless wall is forced into a soil mass that is originally at-rest, the end result will be that a portion of the soil mass will pass into a passive failure condition as shown in Figure 6.11. The soil fails with the vertical stress unchanged from its original value, but with the horizontal stress increased to a maximum value as defined by the Mohr-Coulomb failure criterion. The maximum pressure is denoted by the symbol p_p , and it is defined from the geometry of the Mohr diagram in Figure 6.10 by the equation

$$p_p = \gamma z k_p + 2c\sqrt{k_p} \tag{68}$$

where k_p is the passive pressure coefficient, and can be expressed as follows

$$k_p = \tan^2\left(45^\circ + \frac{\phi}{2}\right) \tag{69}$$

'n Figure 6.10 the passive pressure distribution defined by Equation 6.8 is shown to be linear and in compression her ighout.

niform surcharge for cohesionless soils can be incorporated equation 68 in the form

$$p_s = k_s(\gamma z + q_s) \tag{6.10}$$

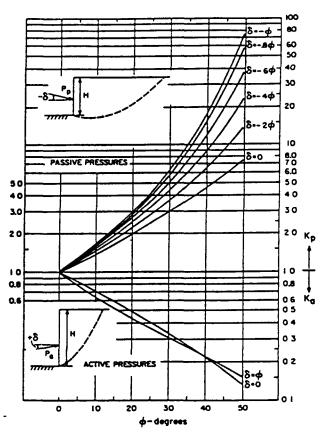


Fig 6.9 Active and passive pressure coefficients for vertical wall and horizontal backfill based on log-spiral failure surfaces (After Caquot and Kerisel 1948)

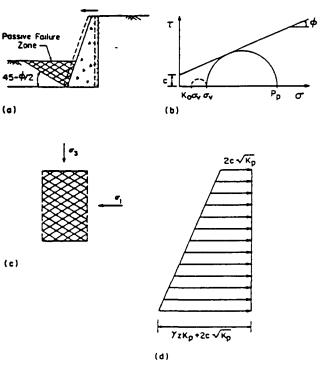


Fig 6.10 Passive pressure—active wall (a) Frictionless wall moves into soil (b) Stress state in passive failure (c) Passive failure zone (d) Theoretical pressure distribution

6. Structural Design Calculations for Concrete Vault (Settling Basin)

TRUCAST COLORADO DIVISION DESIGN CRITERIA FOR UNDERGROUND PRECAST CONCRETE STRUCTURES

MATERIALS:

-General Description 4,500psi TYPE II of III Concrete 28 day compressive strength... -Cement, unless otherwise specified by the project shall be -Reinforcing Steel is Grade 60 with yield strength ... -Admodures, as described in the batch design, will include... 60,000psi

air-entraining agent water-reducing agent accelerator

BATCH DESIGN:

(1 cubic yard)

-Cement		600 lbs.	
-Sand		1,400 lbs	
-3/4" Aggregate		1,700 lbs	
-Water		28 Gale.	
-DV-1000	(W R Grace/Air-Entrainment Agent)	6 czs	
-WRDA-64	(W R Grace/Water-Reducing Agent)	30 czs.	
-POLARBET	(W R Grace/Accelerator)	60 ozs	

SPECIFICATIONS:

Specification for Deformed and Plain Billet-Steel Bars for	107711045
Concrete Reinforcement	A6TM A615
Specifications for Concrete Aggregates	ASTM C33
Test Method for Compressive Strength of Cylindrical Conorele Specimene	ASTM C39
Method to Sieve Analysis for Fine and Coarse Aggregates	ASTM C136
Test Method for sump of Portland Cement Concrete	ASTM C143
Specification for Portland Cement	ASTM C150
Method of Maiding and Curing Concrete Test Specimens in the Laboratory	ASTM C192
Test Method of Air Content of Freshly Moved Concrete by the Pressure Method	ASTM C231
Specification for Air-Entrainment Admitdures for Concrete	ASTM C260
Specification for Chemical Adminitures for Concrete	ASTM C494
Recommended Practice for Minimum Structural Design Loading for Underground Precast Concrete Utility Structures	ASTM C857
Specification for Underground Procest Concrete Utility Structures	ASTM C858
Specification for Design of Concrete using Ultimate Strength Methods	ACI 318-89

LOADING.

Maximum Soil Density	120 PCF
Equivalent Fluid Pressure (Active Soil Pressure)	52 PCF
HS 20 Live Load of Axia	32 KIPS
HS 20 Live Load of Wheel	16 KIPS
Lateral Surcharge Load	125 PSF
Sall Caver	Q-O, Wilu
Live Load increases Due to Impact. Of to 1'-0" of Overburden 1 -1" to 2-0"	30 % 20 %
2-1" to 2-11" 3-0" or more of Overburden	10 % None

NOTE Upon request, Amoor Precast will furnish copies of any raw-material certifications that are required to prove compliance with the above referenced specifications.

AMCOR Precast Colorado Div.

8392 Riverview Pkwy. Littleton, CO 80125 PHONE. 808-791-1100 FAX 808-791-1120

ANALYSIS AND DESIGN OF UNDERGROUND
PREGAST CONCRETE STRUCTURES
USING ULTIWATE STRENGTH DESIGN METHODS

11 1 2 2 1 2 2 2		6 A A 6 A		
IVAULTY "TOTAL "	MOCKY KOCKY	MERTS OF	ンーフ	
SZE	ででで、ペースであり、X 12'-6	• X 7'		
		التناكسين		كالأراب والمساوي

PRODUCTS:INCLUDED: ***** *****************************	** ``\D\#	COMMENTS
LID		
		
BOTTOM SECTION		
BOTTOM OBOTTON		

APPLICABLE CODES:

[1]-AASHTO STANDARD SPECIFICATIONS for HIGHWAY BRIDGES 14TH EDITION

[2] -BUILDING CODE REQUIREMENTS for REINFORCED CONCRETE.ACI 318-89 & ACI 318R-89

[3]—ASTM STANDARD PRACTICE for MINIMUM STRUCTURAL DESIGN LOADING for UNDERGROUND
PRECAST CONCRETE WATER AND WASTEWATER STRUCTURES C890—78(Reapproved 1985)

[4] -PCA DESIGN CRITERIA FOR AIRCRAFT LOADING (for wheel loading only) SHEET MS 026 02P

NOTE: Code selection is predicated on most stringent design criteria and/or practical engineering science

18-8ep-95 08 24 02 AM

1.99' Soil Cover Governs for Lid and Floor

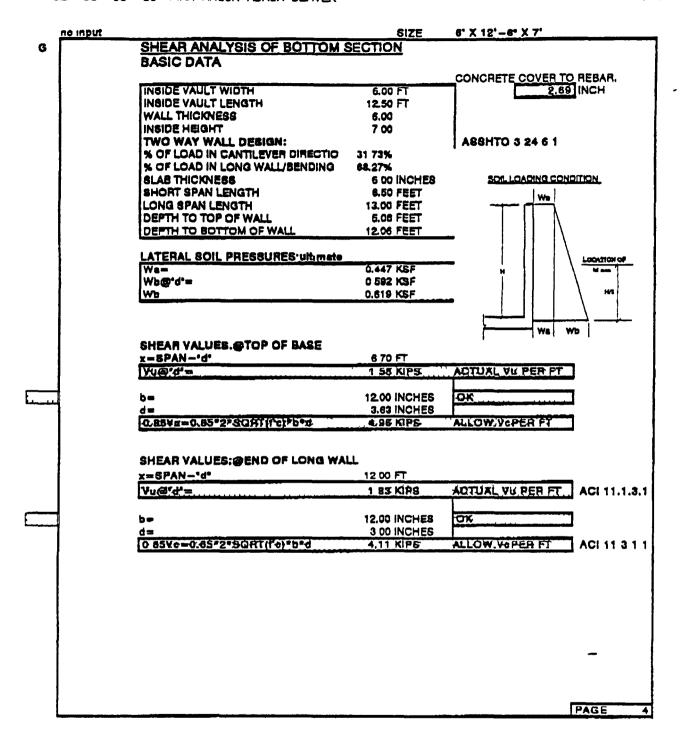
ANALYSIS & DESIGN OF UNDERGROUND-PRECAST STRUCTURES

VERSION 24

BASIC DESIGN PARAMETERS AND INPUT DATA CODE REFERENCES ARE MADE WHEN APPLICABLE/OTHERWISE BASIC ENGINEERING APPLIES

SIDEL INPUT TYPE	OF STRUCTURE "U" for Utility, "W" for	Water Related W	
Stiput VAULT	ROCKY FLATS OUT-7	SIZE 6	X 12'6" X 7'

	NOTE:	PLACEMENT OF REBA	4R·INCH	S OF CO	VER FROM	TENSION S	SUIN ACE	1
	MACROS	COMPONENT		PRODUCT		THICKNES		INCHES
	Shear& Moment	CHECKLIST:		ID	WITH "X"	OR INSIDE	HEIGHT	<u> </u>
input	A&B	LID			×	00 8	N	1 50 7
input	C&D	TOP SECTION				0 00	FT	0 00 N
וטמחנ	E&F	RISER				0.00	FT	0 00 N
ยายาเ	G&H	BOTTOM SECTION			<u> </u>	7 00	FT	0 00 Y
input	167	BASE OF A BOTTOM SECT	ION			6 00	12	1 50 Y
input		WALL THICKNESS				8 00	IN	
ири		INSIDE VAULT WIDTH(SHO	RT)			6 00	FŤ	
Mout		INSIDE VAULT WIDTH(LON	G)			12 50	FT	
MOUT		REBAR SCHEDULE (PRINT)	OUT OP					N
	DATA COMMO	N TO ALL COMPONENTS		VALUE	UNITS	NOTES		
	ity			60,000	PSI	GRADE 60		
onput:				4,500		@ 28 DAY8		
Suput	DEPTH OF FILL			1 99	FEET	ON LID	USE 2' FOI	R HS20 LOAD
input	SURCHARGE H	EIGHT(USE 2' WITH WHEEL L	OADING	2 40	FEET	ABOVE FILL	AASHTO	3.20 3
input	SOIL DENSITY	120 MINIMUM)		120	PCF _	DRY WT	> or = AA	SHTO 6 2.1
input	EQUIVALENT 8	OIL FLUID PRESSURE(30 MINI	IMUM)	52	PCF	ON WALLS	> or = AA	SHTO 6 2 1
		NG: "YES" of "NO"		WHEEL LOAD	YES	SPACING	AIR=2.833	' .H20=6'
		CONCENTRATED WHEEL LOA	D		KIPS@FT=		AASHTO 3	*
		S.GROUP X LOADING gamr		LF		TES	AASHTO 3	
	LIVE LOAD FAC			1 70				22, =2 17
	DEAD LOAD FA	•		1 40	gamma x		AASHTO 3	-
	SOIL LOAD FAC			1 70			AASHTO 3	
	PLAN VIEW DI			VALUE	UNITS			
	OUTSIDE LID/B				FEET			
	OUTSIDE LID/B			13 50				
	INSIDE VAULT				FEET			
	INSIDE VAULT	LENGTH		12 50	FEET	لـــــــــــــــــــــــــــــــــــــ		


SUMMARY OF WEIGHTS AND SOIL LOADING(UNFACTORED) ON COMPONENTS

WEIGHT	COMPONENT	.х.	VERTICAL	HORIZ.	POSITION	OF 'X'
LBS		FT	PSF	LOAD PSF	FROM TOP	OF SOIL
9450 00	LID	1 99	288 80		TOP OF LID	
	LIO	5 06		262 95	BOTTOM O	FLID
0 00	TOP SECTION	5 06		262 95	BOTTOM O	F WALL
	RISER	5 06			BOTTOM O	
	BOTTOM SECTION	5 06		262 95	TOP OF WA	\LL
	BASE OF A BOTTOM SECTION	12 06		626 95	TOP OF BA	SE
37012 50	TOTAL WEIGHT OF CONCRETE	BUOYANO	Y CHECK		N	
	TOTAL WEIGHT OF REBARS				ı	
81 52	LBS REBAR/TONS CONCRETE					
						PAGE

no Input		SIZE	6' X 12'-6' X 7' 18-So	<u> </u>
	SHEAR ANALYSIS OF LID:	-		
	BASIC DATA		CONCRETE COVER TO REBAR	
	INSIDE VAULT WIDTH	6 00 FT	1 50 INCH	
	INSIDE VAULT LENGTH	12,50 FT	İ	
	WALL THICKNESS	8 INCHES	1	
	RATIO. LENGTH WIDTH	2.08		
	ONE-WAY SLAB DESIGN:	100.000	AASHTO 3.24.6 1 AASHTO 3.24 6 1	
	% OF LOAD IN SHORT DIRECTION	100 00%	1	
	% OF LOAD IN LONG DIRECTION REAR THICKNESS	0 00%	AASHTO 3.24.6.1	
		8 INCHES 6 50 FEET		
	SHORT SPAN LENGTH	13 00 FEET	1	
	LONG BEAN CENGTH	10 00 7 22 1		
	DEAD LOADS;ultrimate		_	
ı	SLAB	0 140 K8F		
l	OVERBURDEN	0.334 K8F		
	Wudi=	0 474 KSF		
	INSI GAD WHEN			
	LIVE LOAD, utilimate [WHEEL LOADS (P)	16 KIP6	Ti wheel	
	IMPACT	30%	AASHTO 3 8.2 3	
	WHEEL FOOTPRINT ON LID.	4414	ASTM C857-87	
	WIDTH(PARALLEL TO LONG)	0.83 FT	D 833+1 75*DEPTH OF FILL	
	LENGTH (PARALLEL TO SHORT)	1 67 FT	1 67+1 75*DEPTH OF FILL+	
	Wull	25 46 KIPS/FT	CC DIMEN of WHEELS	31F
	Pu	35 36 KIPS		
	4 b c	0 77 FT 1.67 FT 4 07 FT	50% OF WALL + d ACI 11.1. LOAD LENGTH LOAD TO OTHER END	3, 1
	TOTAL	6 50 FT	BPAN LENGTH	
	TOTAL	0 00 F1	BEAN LENGTH	
	Vu(ii) @*d*=%*(Wuii)(b)((2c)+b)/2	6.07 KIP8/FT	E= 4 39 MASHTO 5:	24.5
	Vu(di)@ 'd'=Wudi(1/2-a)	1 18 KIPS/FT		
	Yu@'d'=	7.25 KIPS	ACTUAL VU PER FT	
	b= d=	12 INCHES	WIDTH OK	
	0 854E-0.86*2*SORT(f'c)*6*d	8,47 KIPS	ALLOW YE PER FT ACI 11 3	1.
	0 884E=0.80-2-2CHHITE:-0-0	6/47 NPS	ACLOW YO PER PT	J
			PAGE	

·	MENT/AS IN LID:			SIZE	6' X 12'~6		
	IIC DATA	•		CONCRET	E COVER TO	REBAR	
	IDE VAULT WIDTH	6 00 F		1		1 50	NCH
	IDE VAULT LENGTH	12.50 F		Ī			ŧ.
	LL THICKNESS	6 IN	CHES				•
	TO LENGTH WIDTH	2.05		}			
	E-WAY SLAB DESIGN:						
	F LOAD IN SHORT DIRECTION	100.00%		AASHTO	3 24.6 1		
	F LOAD IN LONG DIRECTION	0.00%			3 24 6 1		
	AB THICKNESS		CHES	• •	8.24.6.1		
	ORT SPAN LENGTH	8.50 Fi		1			
	NG SPAN LENGTH	13 00 F		1			
DEA	ND LOADS;						
SLA		0 140 K	3F	ì			
	ERBURDEN	0.334 10		<u> </u>			
Wud		0.474 K		1			
1				•			
	LOAD.	16 KG	De	I1 WHEEL			
1	EEL LOADS(P)	30%	rø		3.8 2.3		
	'ACT EEL FOOTPRINT ON LID:	3070			3 3.0 2.3 357 – 57		
			-				
	TH(PARALLEL TO LONG)	0 83 F	•		5 DEPTH OF		
	IGTH(PARALLEL TO SHORT)	1 67 FI		p 6/+1 75	*DEPTH OF	FILL+6FT	
Wul	ı	25.46 KI		1			
Pu		35 36 KI	P8	l			
4414	LYSIS OF 1' WIDE STRIP	SHORT	LONG	Mic-span Degress of		uplication facti	ot ane
	318—89 CHAPTER 10	SPAN	SPAN		rocity.	100 00%	
1	GTOOS CHAPTER TO	2 42		END TO U	QAQ	1 100 00701	
Б		1 67		LOAD LEN			
e		2.42			OTHER END		
	AN LENGTH	6 50	13 00				
	FLOAD	100 00%	0.00%				
	100% OF LOAD)	21 22	10 61				
	I@I/2=(REDUCED by "% of LOAD")	11.41	0 00		- 4 39	E long=	4 78
					AT MIDSPA		
7 T	51/2 •4@ID						j
	40 ME 1/ E						~~~
					7110 111 OF 1		'''
	and then legipoles by the				ERIMIN NO 44	238 A6 14A'A	AY 248' 31
			0 762	BO INCH	FS		= .= .= .
	SAR SIZE #	6	4	#	77		
nput REE	IAH SPACING	8	9	NCHES			
Mu(Mw b= d= Ae (il@I/2=(REDUCED by '% of LOAD') @I/2 ed@I/2 rec'd (Neg Indizates Az min) providad	2.51 13.92 8.50 12 6 19 0.528	9.90 5.00 12 5.56 0.125	FT-WPS FT-MPS NCHES NCHEB SQ INCHI SQ INCHI	AT MIDSPA AT MIDSPA WIDTH OF		
			U.EUZ				
	BAR SPACING	8	9	NCHES			

PAGE

$\overline{}$						SIZE	6' X 12'-6' X 7'
đ, q	MOMENT/AS IN WALL OF BOT	TOM SECT	ON				
- 1	input required on this sheet			•			TE COVER TO REBAR
1	INSIDE VAULT WIDTH	6.00 F				2 0	PE INCH
1	INSIDE VAULT LENGTH	12.50 F	7	i			•
ł	WALL THICKNESS	6.00					
-	INSIDE HEIGHT	7.00			*******		
- [TWO WAY WALL DESIGN:				BS METHO		
-	% OF LOAD IN CANTILEVER DIRECTION		ļ		SS METHO		
	% OF LOAD IN LONG WALL/BENDING	******		STIFFNE	88 METHO	DAASH	TO 8.6
1	SLAB THICKNESS		NCHE6	ļ			
	SHORT SPAN LENGTH	6.50 FI					
1	LONG SPAN LENGTH	13.00 F		ľ			
	DEPTH TO TOP OF WALL	5.06 F	-				
ı	DEPTH TO BOTTOM OF WALL	12.06 F	EET				
	LATERAL SOIL PRESSURES ultimat			1			
	Wa=	0.447 K	_				
ı	Wb=(@H/2)	0,309 K	SF		1 -n_M		
	ANIA MAIO AF ALMAR ATOLE	CANTI	PENDING	SENSING	+or-M BENDING	,	
	ANALYSIS OF 1' WIDE STRIF ACI 318—89 CHAPTER 10	CANT	BENDING LONG L	CORNER		1	
	SPAN LENGTH	7.00	13 00	CONNER		FEET	
	%OF LOAD	31 73%	68.27%	68 27%			
ł	AOF LORD	31.732	00.2174	UG 21 74	00 21 A	 	
ı	Mudi due to Wa	3.47	8 22	3 22	-1.61	FT-KIPS	PER FT OF WIDTH
	Mudi due to Wb	1 60	2.23	2,23	-1 12	FT-KIPE	PER FT OF WIDTH
- [M8=	5.08	5,49	5.45	-2.73	FT~KIPS	PERFT OP WIDTH .
	Mwed=	2.90	3.21	3.21		FT~KPS	
	b≡	12	12	12		NCHEB	WIDTH
	ď₩	3.63	3 00	3 00		NCHES	
_	Az reg'd (Neg indicates As min)	.D.3at	0.448	0,≭48			33% व्य रक्ष्यं व रक्ष्यं व
cck	Ae provided	0.409	0 480	0 460	0 460	BO INCH	ES
St.	REBAR SIZE #	5	5	5	5	#	
ut	REBAR SPACING	9	8	8	8	NCHES	
		**	++	**	++		
		** MUST HAV	E REBAR INPL	IT WHEN C	ANTILEVER	=100%	eee cellm196
		++MUST HA	VE REBAR SIZ	E=0 WHEN	CANTILEVE	R-100%	see cellm186
(CRACK CONTROL·LONG WALL/INS	DE A	ASHTO 8 18 E	3 4			
[ZMAX		570		J		
F	18=		25 99 1	KSI			
	do=		2.38 (NCHES	i '	OK .	
- 1			22.00	sq-inch i	i '		
	A=(2°dc°bar spacing) PER BAR		36 00 0	SC-INCH_	1		

(N)

:			6' X 12'-6' X 7'
	SHEAR ANALYSIS OF BASE SL	AB OF BOT	TOM SECTION
	BASIC DATA		CONCRETE COVER TO REB
	INSIDE VAULT WIDTH	6 00 FT	1.50 INC
1	INSIDE VAULT LENGTH	12.50 FT	
	WALL THICKNESS	6.00 INCHE6	
	RATIO LENGTH-WIDTH	2.06	
1	one—way slab design:		AASHTO 3.24.8.1
j	% OF LOAD IN SHORT DIRECTION	100.00%	AASHTO 3.24.6.1
I	% OF LOAD IN LONG DIRECTION	0 00%	AASHTO 3 24.6 1
ì	SLAB THICKNESS	6 INCHES	
1	SHORT SPAN LENGTH	6.50 FEET	
	LONG SPAN LENGTH	13.00 FEET	_i
	DEAD LOADS uitimate	0 548 KSF	7
	OVERBURDEN	0.334 KBF	
	Wudi=	0.565 KSF	1
ſ	LIVE LOAD:utilmate (Wull only) WHEEL LOAD(P) (above lid) TRANSFERRED TO BASE(ultimate) IMPACT	32.00 KIPS 54 40 KIPS 0 00%	2 WHEELS 0.88 W OF FOOTPRIN 0 83 WMAX -
	DISTRIBUTION AREA	94 50 FT2	1 67 L OF FOOTPRIN
1	Wull=	0 56 KSF	1 67 LMAX
	SHEAR ANALYSIS SHORT DIRECTIO	n N	
		0 60 FT	BO% OF WALL + d ACI
	4=50% OF WALL + d		
	e=50% OF WALL + d	0.0011	
I			SHORT SPAN
[Vu(qi)@'d',=%«Mudi«(i/2-a)	2.34 KIPS	SHORT SPAN
[Vu(di)@*d*=%*(Wulh*(I/2-a)	2.34 KIPS 1 53 KIPS	SHORT SPAN
	Vu(qi)@'d',=%«Mudi«(i/2-a)	2.34 KIPS	
	Vu倒*g.= Vu(i) @.g.=※。(Mnii)。(i/5−=) An(gi) @.g.=※。Mnqi。(i/5−=)	2.34 KIPS 1.53 KIPS 3.87 KIPS	SHORT SPAN ACTUAL VU PER FT
[An 色。Q.= ※。(Mnil)。(i/5ーm) An(ij) ⑤。Q.= ※。(Mnil)。(i/5ーm) An(igi) ⑥。Q.= ※。(Mnil)。(i/5ーm)	2.34 KIPS 1.53 KIPS 3.87 KIPS 12 INCHES	SHORT SPAN
	Vu倒*g.= Vu(i) @.g.=※。(Mnii)。(i/5−=) An(gi) @.g.=※。Mnqi。(i/5−=)	2.34 KIPS 1.53 KIPS 3.87 KIPS	SHORT SPAN ACTUAL VU PER FT

put							
	MOMENT/AS IN BASE SLAB	OF BOTTOM	SECTION	N			
	BASIC DATA				E COVER TO	DREBAR	
	INSIDE VAULT WIDTH	6 00 FT		}		1 50	7
	INSIDE VAULT LENGTH	12.50 FT		l			
	WALL THICKNESS	6		ĺ			•
	RATIO LENGTH: WIDTH	2.08		1			
	ONE-WAY SLAB DESIGN:	USI	ED FOR	AABHTO	3 24 6 1		
	% OF LOAD IN SHORT DIRECTION	100 00% MO	MENT	AASHTO	3.24.6.1		
	% OF LOAD IN LONG DIRECTION	0.00% MO	MENT	AABHTO	3 24.5 1		
	SLAB THICKNESS	e INC					
	SHORT SPAN LENGTH	6 50 FEE		[
	LONG SPAN LENGTH	13 00 FEE	ET .	į			
		ب کے سامند ان پرسالیا		•			
	DEAD LOADS.ultimate						_
	VAULT	0 548 KSF	F	37,01	3	LBS	
	OVERBURDEN	0 334 KSF					
	Wudi=	0 883 KSF	F	1			
				-			
	LIVE LOAD:ultimate (Wull only)			hweer.			
	WHEEL LOAD(P)	32 KIP	8	S WHEELS			
	IMPACT	0%			8 8.2.8		
	DISTRIBUTION AREA	94 50 FT2	?	ASTM C	857-87		
			_				
	Wull=	<u>o 58 K</u> 9F	F	Mid-epan	moment mu	ittelication fo	actor due
	Wull≒				moment mu	itiplication fo	actor due
	Wull=	0 58 KSF		pediese o		itiplication fo	
	ANALYSIS OF 1' WIDE STRIP ACI 318-89 CHAPTER 10	SHORT	LONG BPAN	pediese o			
	ANALYSIS OF 1' WIDE STRIP ACI 318—89 CHAPTER 10 SPAN LENGTH	SHORT SPAN 6.50	LONG SPAN 13 00	pediese o			
	ANALYSIS OF 1' WIDE STRIP ACI 318-89 CHAPTER 10	SHORT SPAN	LONG BPAN	pediese o	footy	100 00%	7
	ANALYSIS OF 1' WIDE STRIP ACI 318—89 CHAPTER 10 SPAN LENGTH %OF LOAD	SHORT SPAN 6.50	LONG SPAN 13 00 0 00%	degrees of	fixity:	100 00%	7
	ANALYSIS OF 1' WIDE STRIP ACI 318—89 CHAPTER 10 SPAN LENGTH %OF LOAD Mudi@i/2=	SHORT SPAN 6,50 100 00%	LONG SPAN 13 00 0 00%	FEET FT-KIPS	REACTION PER FT WI	AT END/FT	7
	ANALYSIS OF 1' WIDE STRIP ACI 318—89 CHAPTER 10 SPAN LENGTH %OF LOAD Mudi@1/2= Mudi@1/2	SHORT SPAN 6.50 100 00% 4 68 3 04	LONG SPAN 13 00 0 00%	FEET FT-KIPS FT-KIPS	REACTION PER FT WI PER FT WI	AT END/FT	7
	Muli= ANALYSIS OF 1' WIDE STRIP ACI 318—89 CHAPTER 10 SPAN LENGTH %OF LOAD Mudi@i/2= Muli@ i/2 Mu@i/Z	SHORT SPAN 6,50 100 00%	LONG SPAN 13 00 0 00% 0 00 0 00 0 00	FEET FT-KIPS FT-KIPS FT-KIPS	REACTION PER FT WI PER FT WI PER FT WI	AT END/FT DTH DTH DTH	7
	ANALYSIS OF 1' WIDE STRIP ACI 318—89 CHAPTER 10 SPAN LENGTH %OF LOAD Mudi@1/2= Mudi@1/2	SHORT SPAN 6.50 100 00% 4 68 3 04 7.70	LONG SPAN 13 00 0 00% 0 00 0 00 0 00 0 00	FEET FT-KIPS FT-KIPS FT-KIPS	REACTION PER FT WI PER FT WI	AT END/FT DTH DTH DTH	7
	Muli= ANALYSIS OF 1' WIDE STRIP ACI 318—89 CHAPTER 10 SPAN LENGTH %OF LOAD Mudi@i/2= Muli@ i/2 Mu@i/z Mwed@i/2	SHORT SPAN 6.50 100 00% 4 68 3 04 7.70	LONG SPAN 13 00 0 00% 0 00 0 00 0 00 0 00 0 00 12	FEET FT-KIPS FT-KIPS FT-KIPS FT-KIPS	REACTION PER FT WI PER FT WI PER FT WI PER FT WI	AT END/FT DTH DTH DTH	7
	Wull= ANALYSIS OF 1' WIDE STRIP ACI 318—89 CHAPTER 10 SPAN LENGTH %OF LOAD Mudi@i/2= Muil@ i/2 Mu@i/Z Mwed@i/2 b= d=	6HORT SPAN 6.50 100 00% 4 88 3 04 7.70 5.12	LONG 8PAN 13 00 0 00% 0 00 0 00 0 00 0 00 12 3 56	FI-KIPS FT-KIPS FT-KIPS FT-KIPS NCHES NCHES	REACTION PER FT WI PER FT WI PER FT WI PER FT WI WIOTH	AT END/FT DTH DTH DTH DTH DTH	7
check	Wull= ANALYSIS OF 1' WIDE STRIP ACI 318—89 CHAPTER 10 SPAN LENGTH %OF LOAD Mudi@I/2= Muli@ I/2 Mu@I/Z Mwed@I/2 b=	SHORT SPAN 5.50 100 00% 4 88 3 04 7.70 5.12 12 4 19	LONG 8PAN 13 00 0 00% 0 00 0 00 0 00 0 00 12 3 56 0 125	FI-KIPS FT-KIPS FT-KIPS FT-KIPS NCHES NCHES	REACTION PER FT WI PER FT WI PER FT WI WIOTH Sfmin of 1	AT END/FT DTH DTH DTH DTH DTH	WIDTH
	ANALYSIS OF 1' WIDE STRIP ACI 318—89 CHAPTER 10 SPAN LENGTH %OF LOAD Mudi@i/2= Muli@i/2 Mu@i/Z Mwed@i/2 b= d= At faq'd (Neg indicates At mm) At provided	6HORT SPAN 6,50 100 00% 4 68 3 04 7,70 5,12 12 4 19 0,439	LONG 8PAN 13 00 0 00% 0 00 0 00 0 00 0 00 12 3 56 0 125	FT-KIPS FT-KIPS FT-KIPS FT-KIPS INCHES INCHES SQ INCHIS	REACTION PER FT WI PER FT WI PER FT WI WIOTH Sfmin of 1	AT END/FT DTH DTH DTH DTH DTH	WIDTH
mput	Wull= ANALYSIS OF 1' WIDE STRIP ACI 318—89 CHAPTER 10 SPAN LENGTH %OF LOAD Mudi@I/2= Muli@ I/2 Mu@I/Z Mwed@I/2 b= d= At raq'd (Neg indicator At mm) At provided REBAR SIZE #	6HORT SPAN 6,50 100 00% 4 68 3 04 7.70 5,12 12 4 19 0,439 0,480	LONG 8PAN 13 00 0 00% 0 00 6.00 6.00 12 3 56 9.125 0 392	FT-KIPS FT-KIPS FT-KIPS FT-KIPS INCHES INCHES SQ INCHI	REACTION PER FT WI PER FT WI PER FT WI WIOTH Sfmin of 1	AT END/FT DTH DTH DTH DTH DTH	WIDTH
mput	ANALYSIS OF 1' WIDE STRIP ACI 318—89 CHAPTER 10 SPAN LENGTH %OF LOAD Mudi@i/2= Muli@i/2 Mu@i/Z Mwed@i/2 b= d= At faq'd (Neg indicates At mm) At provided	SHORT SPAN 6,50 100 00% 4 68 3 04 7,70 5,12 12 4 19 0,439 0,480	LONG 8PAN 13 00 0 00% 0 00 6.00 6.00 12 3 56 9.125 0 392	FT-KIPS FT-KIPS FT-KIPS FT-KIPS INCHES INCHES SQ INCHIS	REACTION PER FT WI PER FT WI PER FT WI WIOTH Sfmin of 1	AT END/FT DTH DTH DTH DTH DTH	WIDTH
mput	Wull= ANALYSIS OF 1' WIDE STRIP ACI 318—89 CHAPTER 10 SPAN LENGTH %OF LOAD Mudi@i/2= Muil@ i/2 Mu@i/Z Mwed@i/2 b= d= At raq'd (Neg indicates At min) At provided REBAR SIZE # REBAR SPACING	SHORT SPAN 6,50 100 00% 4 68 3 04 7,70 5,12 12 4 19 0,439 0,480 5	LONG 8PAN 13 00 0 00% 0 00 0 00 0 00 0 00 12 3 56 9,125 0 292 4	FT-KIPS FT-KIPS FT-KIPS FT-KIPS NCHES NCHES NCHES NCHES NCHES NCHES	REACTION PER FT WI PER FT WI PER FT WI WIOTH Sfmin of 1	AT END/FT DTH DTH DTH DTH DTH	WIDTH
mput	ANALYSIS OF 1' WIDE STRIP ACI 318—89 CHAPTER 10 SPAN LENGTH %OF LOAD Mudi@i/2= Muii@ i/2 Mu@i/Z Mwed@i/Z b= d= A* frat'd (Neg indicator A* mm) A* provided REBAR SIZE # REBAR SPACING CHACK CONTROL:LONG WALL/INS	SHORT SPAN 6,50 100 00% 4 88 3 04 7.70 5,12 12 4 19 0,439 0,480 5	LONG SPAN 13 00 0 00% 0 00 0 00 0 00 0 00 12 3 56 0.125 0 282 4	FT-KIPS FT-KIPS FT-KIPS FT-KIPS NCHES NCHES NCHES NCHES NCHES NCHES	REACTION PER FT WI PER FT WI PER FT WI WIOTH Sfmin of 1	AT END/FT DTH DTH DTH DTH DTH	WIDTH
mput	ANALYSIS OF 1' WIDE STRIP ACI 318—89 CHAPTER 10 SPAN LENGTH %OF LOAD Mudi@i/2= Muil@ i/2 Mu@i/Z Mw@i/Z Mwed@i/2 b= d= At faq'8 (Neg indicates At min) At provided REBAR SIZE # REBAR SPACING CRACK CONTROL:LONG WALL/IN:	SHORT SPAN 6,50 100 00% 4 88 3 04 7.70 5.12 12 4 19 0.439 0,480 5 8	LONG SPAN 13 00 0 00% 0 00 6.00 9 00 12 3 56 9.125 0 282 4 9	FT-KIPS FT-KIPS FT-KIPS FT-KIPS NCHES NCHES NCHES NCHES NCHES NCHES	REACTION PER FT WI PER FT WI PER FT WI WIOTH Sfmin of 1	AT END/FT DTH DTH DTH DTH DTH	WIDTH
mput input	ANALYSIS OF 1' WIDE STRIP ACI 318—89 CHAPTER 10 SPAN LENGTH %OF LOAD Mudi@i/2= Muil@i/2 Mu@i/Z Mwed@i/2 b= d= At fract (Neg indicates At mm) At provided REBAR SIZE # REBAR SPACING CRACK CONTROL:LONG WALL/IN: Z MAX 170	SHORT SPAN 6,50 100 00% 4 68 3 04 7,70 5,12 12 4 19 0,439 0,480 5 8 SIDE AAS	LONG SPAN 13 00 0 00% 0 00 6.00 12 3 56 0.125 0 282 4 9 SHTO 6 16	FT-KIPS FT-KIPS FT-KIPS FT-KIPS NCHES NCHES NCHES NCHES NCHES NCHES	REACTION PER FT WI PER FT WI PER FT WI WIOTH Sfmin of 1	AT END/FT DTH DTH DTH DTH	WIDTH
mput	ANALYSIS OF 1' WIDE STRIP ACI 318—89 CHAPTER 10 SPAN LENGTH %OF LOAD Mudi@i/2= Muil@i/2 Mu@i/Z Mwed@i/2 b= d= At fract (Neg indicates At mm) At provided REBAR SIZE # REBAR SPACING CRACK CONTROL:LONG WALL/IN: Z MAX 170	SHORT SPAN 6,50 100 00% 4 88 3 04 7.70 5.12 12 4 19 0.439 0,480 5 8	LONG SPAN 13 00 0 00% 0 00 6.00 12 3 56 0.125 0 282 4 9 SHTO 8 16	FT-KIPS FT-KIPS FT-KIPS FT-KIPS NCHES NCHES NCHES NCHES NCHES NCHES	REACTION PER FT WI PER FT WI PER FT WI WIOTH Sfmin of 1	AT END/FT DTH DTH DTH DTH DTH	WIDTH

AMCOR Precast, Colorado Div.

8392 Riverview Pkwy. Littleton, CO. 80125 PHONE. 303-791-1100 FAX 303-791-1120

ANALYSIS AND DESIGN OF UNDERGROUND.
PRECAST CONCRETE STRUCTURES
USING ULTIMATE STRENGTH DESIGN METHODS

VAULT: KOCKY PLATS	ou-1
SIZE: ************************************	

PRODUCTS INCLUDED:	() , ,,	: ID#	2	· COMMENTS
LID				
			 	
BOTTOM SECTION				

APPLICABLE CODES:

[1] -AASHTO STANDARD SPECIFICATIONS for HIGHWAY BRIDGES 14TH EDITION

[2]-BUILDING CODE REQUIREMENTS for REINFORCED CONCRETE ACI 318-89 & ACI 318A-89

[3]—ASTM STANDARD PRACTICE for MINIMUM STRUCTURAL DESIGN LOADING for UNDERGROUND PRECAST CONCRETE WATER AND WASTEWATER STRUCTURES: C890—78(Reapproved 1985)

[4] -PCA DESIGN CRITERIA FOR AIRCRAFT LOADING (for wheel loading only) SHEET MS 026 02P

NOTE Code selection is predicated on most stringent design criteria and/or practical engineering science

18-Sep-95 07 39 48 AM

3'-0" Soil Cover Governs for: Walls

ANALYSIS & DESIGN OF UNDERGROUND-PRECAST STRUCTURES

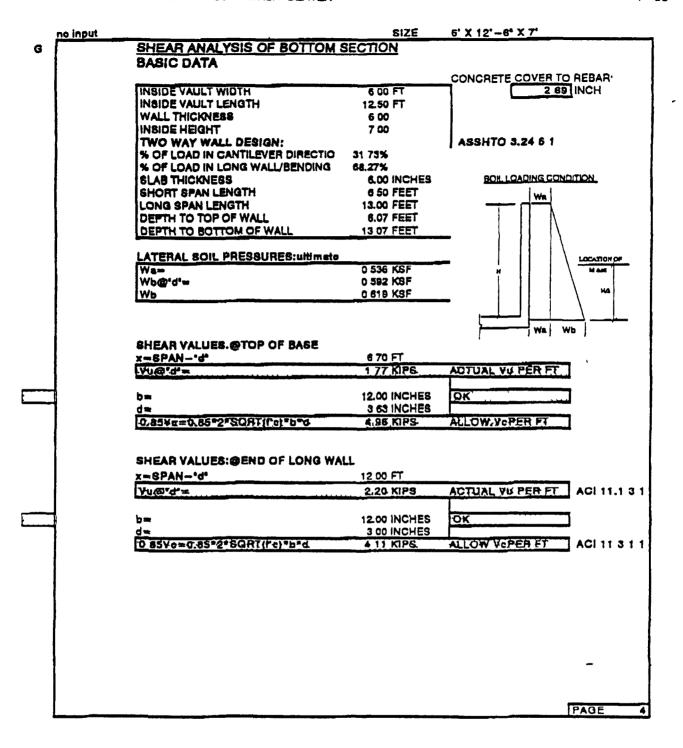
VERSION 2.4

BASIC DESIGN PARAMETERS AND INPUT DATA
CODE REFERENCES ARE MADE WHEN APPLICABLE/OTHERWISE BASIC ENGINEERING APPLIES

siput INPUT TYPE OF STRUCTURE "U" for Utility, "W" for	Water Related W
input VAULT: KOCKY FLATS CKI-7	SIZE: 6' X 12'-6" X 7"

	NOTE:	PLACLMENT OF I	RERAR-INCH	S OF COL	/ER FROM	TENSION S	SURFACE	<u> </u>
	MACROS	COMPONENT		PRODUCT		THICKNES		INCHES
	Shear&Moment			10		OR INSIDE		
Input	A & B	LID			X	8.00	IN	1 50 Y
Mour	CFD	TOP SECTION				0 00	FT	0 00 N
गिष्ट्या	E&F	RISER				0 00	FT	0 00 N
Siput	G&H	BOTTOM SECTION			×	7 00	FT	0 00 Y
Input	187	BASE OF A BOTTOM S	ECTION			6.00	IN	1 50 Y
श्राम्पर		WALL THICKNESS				6.00	IN	
input.		INSIDE VAULT WIDTH	SHORT)			6.00	FT	
וטפוג		INSIDE VAULT WIDTH(LONG)			12.50	FT	
प्रकार	R	REBAR SCHEDULE (PR						N.,
	DATA COMMO	N TO ALL COMPONENT	8	VALUE	UNITS	NOTES	•	
	fy			60,000	PSI	GRADE 60		
diput	fc.			4 500		@ 28 DAYS		
lubnt.	DEPTH OF FILL			3.00	FEET	ON LID	USE 2' FO	R HS20 LOAD.
mout	SURCHARGE H	HEIGHT (USE 2' WITH WHE	EL LOADING	2.40	FEET	ABOVE FILL	AASHTO	3.20 3
Inpat	SOIL DENSITY	120 MINIMUM)		120	PCF	DRY WT	> or = AA	SHTO 6.2.1
		OIL FLUID PRESSURE(30	MINIMUM)	52	PCF	ON WALLS	> or = AA	SHTO 6,2,1
		NG "YES" or "NO"		WHEEL LEAD	YES	SPACING	AIR=2 883	' .H20=6'
		DISTRIBUTED THAU SOIL			KIPS@FT=		AASHTO 2	•
-		IS GROUP X LOADING		LF		TES	AASHTO 8	
	LIVE LOAD FAC		CI = 17)	1 70				3.22, =2.17
	5		ACI = 14)	1.40	gamma x		AASHTO S	
	SOIL LOAD FAC		ACI = 17)	1 70			AASHTO S	
,	PLAN VIEW DI			VALUE	UNITS			
	OUTSIDE LID/E				FEET			
	OUTSIDE LID/B			13 50				
	INSIDE VAULT				FEET			
	INSIDE VAULT	LENGTH		12 50	FEET	<u></u>		

WEIGHT	COMPONENT	'X'	VERTICAL	HORIZ	POSITION	OF 'X'
LBS		FT	PSF	LOAD PSF	FROM TO	OF SOIL
9450 00	LID	3 00	360 00		TOP OF LIC	
7. 4.4. 4		6 07			BOTTOM C	
0 00	TOP SECTION	6 07		315 47	BOTTOM C	F WALL
0 00	RISER	6 07		315 47	BOTTOM C	F WALL
	BOTTOM SECTION	6 07		315 47	TOP OF W	ALL
	BASE OF A BOTTOM SECTION	13 07	751 67	679 47	TOP OF BA	SE
37012 50	TOTAL WEIGHT OF CONCRETE	BUOYANC	Y CHECK		N	
1729 10	TOTAL WEIGHT OF REBARS				1	I
93 43	LBS REBAR/TONS CONCRETE					
	<u> </u>					PAGE


no Input		"SIZE.	8' X 12'-6' X 7'	18-8ep
	SHEAR ANALYSIS OF LID: BASIC DATA	-	CONCRETE COVER TO	7 BERAD:
	INSIDE VAULT WIDTH	6.00 FT		JINCH JUEBAN
	INSIDE VAULT LENGTH	12.50 FT	1 13	7.1101
	WALL THICKNESS		1	
	RATIO LENGTH:WIDTH	6 INCHES	i	
	ONE-WAY SLAB DESIGN:	2.08	AASHTO 5 24.6 1	
	% OF LOAD IN SHORT DIRECTION	400 BON	AASHTO 3.24.6 1	
		100.00%		
	% OF LOAD IN LONG DIRECTION	0 00%	AABHTO 8 24 6.1	
	SLAB THICKNESS	8 INCHES	ŀ	
	SHORT SPAN LENGTH	6.50 FEET		
	LONG SPAN LENGTH	13 00 FEET	_	
	DEAD LOADS ultimate			
	SLAB	0 140 KSF	~	
	OVERBURDEN	0 140 KSF		
	Oversonden Wudi =		j	
	** UGI ==	0 644 KBF		
	LIVE LOAD-ultimate			
	WHEEL LOADS(P)	32 KIPS	2 WHEELS	
	IMPACT	20%	AASHTO 3 5 2.3	
	WHEEL FOOTPRINT ON LID.		A8TM C857-87	
	WIDTH(PARALLEL TO LONG)	6 08 FT	D 833+1 75*DEPTH OF	FILL
	LENGTH (PARALLEL TO SHORT)	12.92 FT	1 87+1.75*DEPTH OF	FILL+
	Wull	0.83 KIPS/FT		of WHEELS(F
	Pu	65 28 KIPS		
	a b	0 77 FT 5 73 FT 0.00 FT	50% OF WALL + d LOAD LENGTH LOAD TO OTHER END	ACI 11.1.3
	TOTAL	6 50 FT	SPAN LENGTH	
				4
	Vu(ii)@°d°=%°(Wuii)(b)((2c)+b)/2i	2.10 KIPS/FT	E= 1	1
	Vu(dl)@ 'd'=Wudl(1/2-a)	1 60 KIPS/FT	•	1
	Yu@'d'=	9.70 KIPS	ACTUAL VI PER FT	1
				i
	b= d=	12 INCHES	WIDTH OK	1
	b= d= 0 884x=0.85*2*30ATIFct*6*d	12 INCHES 6 19 INCHES 8 47 KIPS	ALLOW VE PER FT] ACI 11 3 1

13/0

SEASIC DATA	ut				SIZE.	8' X 12'-8' X 7'	18-5ep
BABIC DATA	d,q	MOMENT/As IN LID:	_				
INSIDE VAULT WIDTH 12.00 FT 1.50 INCH 1.50 INC			-		CONCRE		_
INDIDE VAULT LENGTH			6.00 FT		7	1 50	INCH
WALL THICKNEES ARTICL LENGTH WIDTH 2.05]	· · · · · · · · · · · · · · · · · · ·			1		-
NATIO: LENGTH WIDTH	ŀ			HES	i		
ONE-WAY SLAB DESIGN: % OF LOAD IN SHORT DIRECTION 0.00% AASHTO 3.24.6.1 % OF LOAD IN LONG DIRECTION 0.00% SLAB THICKNESS SINCHES SINCHES SHORT SPAN LENGTH C.50 FEET LONG SPAN LENGTH C.50 FEET	- 1	***************************************		,,			
# OF LOAD IN SHORT DIRECTION					1		
# OF LOAD IN LONG DIRECTION 0.00% SINCHES SHORT SPAN LENGTH 13 00 FEET OEAD LOADS			100 00%		AARHT	0.3.24.6.1	
SLAS THICKNESS SINCHES SHORT SPAN LENGTH 13 00 FEET	i						
SHORT SPAN LENGTH			- •	LIEO		· · · · - ·	
DEAD LOADS			*	. –	AV6U	J 3.24.6.1	
DEAD LOADS					ļ		
SLAE	•	LONG SPAN LENGTH	13 00 FEE		1		
SLAE							
OVERBURDEN O.504 KSF O.5		DEAD LOADS.			_		
UVE LOAD		SLAE			1		
WHEEL LOADS(P) SZ KIPS AARHTO 3 8.2.5		T			}		
WHEEL LOADS(P) 32 KIPS 20% AASHTO 3 5.2.3 WHEEL POOTPRINT ON LID* 6.08 FT 3.833+1 75*DEPTH OF FILL WIDTH(PARALLEL TO LONG) 6.08 FT 3.833+1 75*DEPTH OF FILL LENGTH(PARALLEL TO SHORT) 12.02 FT 1.87+1 75*DEPTH OF FILL +6FT Wull		Wudi=	0 644 KSF		J		
WHEEL LOADS(P) 32 KIPS 20% AASHTO 3 5.2.3 WHEEL POOTPRINT ON LID* 6.08 FT 3.833+1 75*DEPTH OF FILL WIDTH(PARALLEL TO LONG) 6.08 FT 3.833+1 75*DEPTH OF FILL LENGTH(PARALLEL TO SHORT) 12.02 FT 1.87+1 75*DEPTH OF FILL +6FT Wull		LIVE LOAD					
IMPACT			32 KIP	8	2 WHEEL	S	
WHEEL FOOTPRINT ON LID: WIDTH(PARALLEL TO LONG) 6.08 FT 1.292 FT 1.533+1 75" DEPTH OF FILL 1.67+1 78" DEPTH OF FILL					1	_	
WIDTH(PARALLEL TO LONG) 6.08 FT 1.262 FT 1.833+1.75*DEPTH OF FILL 1.67+1.75*DEPTH OF F							
LENGTH (PARALLEL TO SHORT) 12.82 FT 167+1 78* DEPTH OF FILL+6FT Wull 0.83 kJPS/FT 15 28 kJPS Mid - span moment multiplication factor due			A CALET				
Wull Pu 65.28 kips Mild-span moment multiplication factor due					F		
### ### ### ### ### ### ### ### ### ##			· — · · ·	D/ET	1 0, 7, 7,	Perin VIIILETONI	
ANALYSIS OF 1' WIDE STRIP ACI 318—89 CHAPTER 10 SPAN SOP SPAN SPAN SPAN SOP SPAN SPAN SOP SPAN SPAN SOP SPAN SPAN SOP SPAN SOP SPAN SOP SPAN SOP SPAN SOP SPAN SOP SPAN SP					1		
ANALYSIS OF 1' WIDE STRIP ACI 318—89 CHAPTER 10 SPAN SPAN SPAN SPAN SPAN SPAN SPAN SPA		PU	93 28 NP	3	.		-4
## ACI 318—89 CHAPTER 10 S		11141 MAIN OF 41 MINT ATOIS	AUDIT	LONG			etor due
S							7
B		التساب المسابق والمسابق والمسا					
C 0 00 3 48 LOAD TO OTHER END SPAN LENGTH 6 50 13 00 FEET **OF LOAD 100,00% 0 00% RII(100% OF LOAD) 2.70 2.53 KIPS Mull@1/2=(REDUCED by '% of LOAD') 4.39 0 00 E short= 1.00 E long= 1 Mudl@1/2=(REDUCED by '% of LOAD') 3.40 0 00 FT-KIPS AT MIDSPAN/FT WIDTH Mu@1/2: 7.78 9.00 FT-KIPS AT MIDSPAN/FT WIDTH Mu@1/2: 5.01 0 00 FT-KIPS AT MIDSPAN/FT WIDTH b= 12 12 NCHES WIDTH OF STRESS BLOCK d= 6.19 5.56 NCHES As req'd (Neg indicates As min) 0.289 0 125 SQ INCHES(min or 125% of req'd or req'd) As provided 0.409 0.262 SQ INCHES TREBAR SIZE # 5 4 # URL REBAR SPACING 9 9 NCHES CRACK CONTROL LONG WALL/INSIDE AASHTO 8 16 8 4 ZMAX 170 KIPS/NCH 13 25 97 KSI dc 1 81 INCHES OK							
SPAN LENGTH		<u> </u>					
## ## ## ## ## ## ## ## ## ## ## ## ##	Į					OTHER END	
Ril(100% OF LOAD)	- (SPAN LENGTH		13 00	FEET		
Muli@i/2=(REDUCED by '% of LOAD') 4.39 0.00 E short= 1.00 E long= 1 Mudi@i/2=(REDUCED by '% of LOAD') 3.40 0.00 FT-KIPS AT MIDSPAN/FT WIDTH Mu@i/2 7.78 9.90 FT-KIPS AT MIDSPAN/FT WIDTH Mwed@i/3 5.01 0.00 FT-KIPS AT MIDSPAN/FT WIDTH b= 12 12 NCHES WIDTH OF STRESS BLOCK d= 6.19 5.56 NCHES As (eq'd (Neg indicates As min) 0.289 0.125 SQ INCHES(min ar 133% of req'd or req'd) As provided 0.409 0.282 SQ INCHES ut REBAR SPACING 9 9 NCHES CRACK CONTROL LONG WALL/INSIDE AASHTO 8.16.8.4 ZMAX 170 KIPS/INCH 15 25.97 KSi dc 1.81 INCHES DK A=(2*de*bar spacing) PER BAR 32.63 SQ INCHES		%OF LOAD	100,00%				
Mudi@i/2=(REDUCED by "% of LOAD") 3.40 0.00 FT-KIPS AT MIDSPAN/FT WIDTH Mu@i/2 7.78 9.90 FT-KIPS AT MIDSPAN/FT WIDTH Mwed@i/2 5.0t 0.00 FT-KIPS AT MIDSPAN/FT WIDTH b= 12 12 NCHES WIDTH OF STRESS BLOCK d= 6.19 5.56 NCHES A3 (eq'd [Neg indizates As min) 0.289 0.125 SQ INCHES(min ar 133% of req'd or req'd) A4 provided 0.409 0.282 SQ INCHES 2tt REBAR SIZE # 5 4 4tt REBAR SPACING 9 9 NCHES CRACK CONTROL LONG WALL/INSIDE AASHTO 8 16 8 4 ZMAX 170 KIPS/INCH 15 25 97 KSi dc 1 81 INCHES A4 (2*de*bar spacing) PER BAR 32 63 SQ INCHES	- 1	All(100% OF LOAD)	2.70	2 53	KIPS		
Mudi@i/2=(REDUCED by "% of LOAD") 3.40 0.00 FT-KIPS AT MIDSPAN/FT WIDTH Mu@i/2 7.78 9.90 FT-KIPS AT MIDSPAN/FT WIDTH Mwed@i/2 5.0t 0.00 FT-KIPS AT MIDSPAN/FT WIDTH b= 12 12 NCHES WIDTH OF STRESS BLOCK d= 6.19 5.56 NCHES A3 (eq'd [Neg indizates As min) 0.289 0.125 SQ INCHES(min ar 133% of req'd or req'd) A4 provided 0.409 0.282 SQ INCHES 2tt REBAR SIZE # 5 4 4tt REBAR SPACING 9 9 NCHES CRACK CONTROL LONG WALL/INSIDE AASHTO 8 16 8 4 ZMAX 170 KIPS/INCH 15 25 97 KSi dc 1 81 INCHES A4 (2*de*bar spacing) PER BAR 32 63 SQ INCHES	- 1	Mull@l/2=(REDUCED by '% of LOAD')	4 39	0 00	E short	= 1.00 Elong=	1
Mue/2			3.40	0 00	FT-KIPS	AT MIDSPAN/FT WIDTH	+
Mwed@M2							
12 12 NCHES WIDTH OF STRESS BLOCK d =							
d =	ļ					WIDTH OF STRESS BL	DCK
As req'd (Neg indicates As min) As provided 0.409 0.282 SQ INCHES INCHES INCHES INCHES CRACK CONTROL LONG WALL/INSIDE ABHTO 8 16 8 4 ZMAX 170 KIPS/INCH 18 A=(2*de*bar spacing) PER BAR 32 63 SQ INCHES	ł						
As provided	ŀ					Estmin or 1294 of real	d ar renini
## REBAR SIZE # 5 4 # ## REBAR SPACING 9 9 NCHES CRACK CONTROL LONG WALL/INSIDE AABHTO 8 16 8 4 ZMAX 170 KIPS/INCH 15 25 97 KSI de 1 81 INCHES DK A=(2*de*bar spacing) PER BAR 32 63 SQ INCHES							- 24 124 24
## REBAR SPACING 9 9 NCHES CRACK CONTROL LONG WALL/INSIDE AASHTO 6 16 8 4 ZMAX 170 KIPS/INCH 15 25 97 KSi dc 1 81 INCHES DK A=(2*de*bar spacing) PER BAR 32 63 SQ INCHES						<u> </u>	
CRACK CONTROL LONG WALL/INSIDE AASHTO 6 16 8 4 ZMAX 170 KIRS/INCH 15 25 97 KSI dc 1 81 INCHES DK A=(2*de*bar spacing) PER BAR 32 63 SQ INCHES	_						
ZMAX 170 KIPS/INCH ts 25 97 KSI dc 1 81 INCHES A=(2°de*bar spacing) PER BAR 32 63 SQ INCHES	et j	REBAR SPACING	9	9	INCHES		
ZMAX 170 KIPS/INCH ts 25 97 KSI dc 1 81 INCHES A=(2°de*bar spacing) PER BAR 32 63 SQ INCHES							
15 25 97 KSi dc 1 81 INCHES DK A (2°de°bar spacing) PER BAR 32 63 SQ INCHES					8 4	_	
15 25 97 KSi dc 1 81 INCHES DK A (2°de°bar spacing) PER BAR 32 63 SQ INCHES				SANCH			
de						7	
A=(2°de°bar spacing) PER BAR 32 63 SQ INCHES	_			HES		lok	
		= =					
10 1010 1 10 11 0 10 10 10 10 10 10 10 1						7	
	Ł	Charles Fee Inc . M Angoo	IVINE	51414/017		und	
							PAGE

12)

}

PAGE

					SIZE	6' X 12	-6' X 7'
1'd MOMENT/AS IN WALL OF BOTTOM SI	CT	<u>ion</u>				-	
					CONCRE	TE COVER	TO DEDA
input required on this sheet			ı			BINCH	IO NEDA
	,00 F				20	BINCH	
	.50 F	भ					•
***************************************	.00						
	.00					TO 4.6	
TWO WAY WALL DESIGN				SS METHO			
% OF LOAD IN CANTILEVER DIRECTIO 31.7				SS METHO			
% OF LOAD IN LONG WALL/BENDING 68.2			RIIFFRE	S METHO	D AASH	10 4 6	
		NCHES					
	50 F						
10011001111	.00 F						
-	.07 F		j				
DEPTH TO BOTTOM OF WALL 13	.07 F	EE	l				
LATERAL SOIL PRESSURES-ultimate			_				
Wa= 0:	36 K	(SF					
Wb=(@H/2) 0:	309 K	SF					
			·	+or-M			
ANALYSIS OF 1' WIDE STRIP CA	NT	BENDING	BENDING	BENDING			
ACI 318-85 CHAPTER 10	PAN	LONG L	CORNER	SHORTL			
	.00	13.00		6,50	FEET		/
%OF LOAD \$1.7	3%	68.27%	68 27%	68 27%			
Mudi due to Wa 4	17	3 87	3.87	_1 93	FT-KIPS	PERET	OF WIDTH
10.00.000.000.00	60	2.23	2.23		FT-KIPB		OF WIDTH
11100:000 10 110	.77 	e ro	8.10		BADI~TA	वस्य हर	OF WIDTH
	40	2,58	3,59		T-KIPS		OF WIDTE
	121	12	12		NCHES	WIDTH	
de 3	63	3 00	3 00		NCHEB		
	89	D.508	0,508			as to XEG	
	301	0 589	0 589		EQ (NCH		4 4 4 10
	6	6	6	6	#		
REBAR SIZE #							
REBAR SPACING	9	9	9		NCHES		
		++ VE REBAR INPL IVE REBAR SIZ				see celin	

		SIZE	6' X 12'-6' X 7'
i	SHEAR ANALYSIS OF BASE SLA	AB OF BOT	TOM SECTION
}	BASIC DATA		CONCRETE COVER TO REBAR
ł	INSIDE VAULT WIDTH	6 00 FT	1 50 INCH
i	INSIDE VAULT LENGTH	12.50 FT	
l	WALL THICKNESS	6 00 INCHES	
1	RATIO' LENGTH WIDTH	2,08	
j	ONE-WAY SLAB DESIGN:		AASHTO 3.24 8 1
į.	% of Load in Short Direction	100.00%	AASHTO 3 24 6 1
Į.	% of Load in Long Direction	0.02%	AASHTO 3 24 6.1
1	SLAB THICKNESS	6 INCHES	
{	SHORT SPAN LENGTH	6 50 FEET	
	LONG SPAN LENGTH	13 00 FEET	لـــا
	DEAD LOADS withmate VAULT OVERBURDEN Wudi = LIVE LOAD withmate (Wull only) WHEEL LOAD (P) (above lid) TRANSFERRED TO BASE (ultimate) IMPACT DISTRIBUTION AREA	0 548 KBF 0.504 KSF 1,052 KBF 32.00 KIPS 29.48 KIPS 0 00% 94 50 FT2	NOTES ASTM C857-87 2 WHEELS 6 08 W OF FOOTPRINT ON LID 6,08 WMAX 12.52 L OF FOOTPRINT ON LID
	SHEAR ANALYSIS SHORT DIRECTION	0 31 K8F	7 00 LMAX
	a=50% OF WALL + d	0 80 FT	50% OF WALL + d ACI 11.1 3.1
	8=30% OF WALL TO	00011	power water of
ļ	Vu(di)@'d'=%*Wudi*(I/2-a)	2 79 KIPS	SHORT SPAN
	\u(\frac{a}{a})@\d'=%\\\u(\frac{a}{a})\\\u(\frac{a}{a})\\\u(\frac{a}{a})\\\u(\frac{a}{a})\\\u(\frac{a}{a})\\\u(\frac{a}{a})\\\u(\frac{a}{a})\\\u(\frac{a}{a})\\\u(\frac{a}{a})\\\u(\frac{a}{a})\\\u(\frac{a}{a})\\\u(\frac{a}{a})\\\u(\frac{a}{a})\\\u(\frac{a}{a})\\u(\frac{a}{a})\\u(\frac{a}{a})\\u(\frac{a}{a})\\u(\frac{a}{a})\\u(\frac{a}{a})\\u(\frac{a}{a})\\u(\frac{a}{a})\\u(\frac{a}{a})\\u(\frac{a}{a})\u(\frac	0 83 KIPS	SHORT SPAN
	Vu@"4">	3 52 KIPS	ACTUAL YU PER FT
	1000 0 5	0 45 117 0	
	b= d=	12 INCHES 4 19 INCHES	WIDTH OK.
		5 73 KIPS	ALLOW VU PER FT. ACI 11 3 1 1
Í	0.55Vc=0 85*2*5QR((rc)*b*d		

DY

ıt _	<u> </u>						
_	MOMENT/AS IN BASE SLAB	OF BOTTO	M SECTIO	N .			
	BASIC DATA	<u> </u>			E COVER T	O REBAR	
1	INSIDE VAULT WIDTH	6 00 FT		1			50
	INSIDE VAULT LENGTH	12 50 FT		1		***************************************	
	WALL THICKNESS	6		1			
	RATIO: LENGTH:WIDTH	2.08		1			•
- 1	ONE-WAY SLAB DESIGN:		ED FOR	AASHTO	3 24 6.1		
	% OF LOAD IN SHORT DIRECTION	100 00% MC			3.24 6.1		
	% OF LOAD IN LONG DIRECTION	0.00% MC			3.24.6.1		
	SLAB THICKNESS	***************************************	CHES				
- 1	SHORT SPAN LENGTH	6.50 FE		1			
	LONG SPAN LENGTH	13.00 FE		1			
•				•			
1	DEAD_LOADS-ultimate						
ſ	VAULT	0.548 KS	F	37,01	3	LBS	
1	OVERBURDEN	0 504 KS	F				_
L	Wudi=	1 052 KB	F				
•				-			
	LIVE LOAD:ultimate (Wull only)			•			
	WHEEL LOAD(P)	32 KIF	98	k WHEELS			
	IMPACT	0%		AASHTO			
- 1	DISTRIBUTION AREA	94 50 FT	_	ASTM C	857 – 87		
	\4/sil	0 81 K8	=	į .			
L	Wull =	00110		i Mid-epan	moment mu	ultiplication	factor due
					moment my	illiplication	factor due
•	ANALYSIS OF 1' WIDE STRIP	SHORT		degrees of			<u> </u>
		зноят	LONG SPAN	degrees of		ultiplication	<u> </u>
	Analysis of 1' wide Strip aci 318—89 Chapter 10 Span Length	SHORT SPAN 8 50	LONG SPAN 13.00	degrees of			<u> </u>
	ANALYSIS OF 1' WIDE STRIP ACI 318—89 CHAPTER 10	SHORT SPAN	LONG SPAN	degrees of	fixity	100,00	3]
	Analysis of 1' wide Strip aci 318—89 Chapter 10 Span Length	SHORT SPAN 8 50	LONG SPAN 13.00 0 00%	degrees of	fixity	100,00	3]
	Analysis of 1' wide strip aci 318—89 Chapter 10 Span Length %of Load	SHORT SPAN 8 50 100 00%	LONG SPAN 13.00 0 00%	degrees of	fixity:	100,00	3]
	Analysis of 1' wide Strip aci 318—89 Chapter 10 Span Length Mof Load	SHORT 8 PAN 8 50 100 00%	LONG SPAN 13.00 0 00% 0 00 0.00	degrees of FEET FT-KIPS FT-KIPS	REACTION PER FT WI	100,00 I AT END/F DTH DTH	3]
	Malysis of 1' wide strip aci 318—89 Chapter 10 Span Length Mof Load Mudi@1/2= Muli@ 1/2	SHORT 8 PAN 8 50 100 00% 5 56 1 65	LONG SPAN 13.00 0 00% 0 00 0.00	HEET FT-KIPS FT-KIPS FT-KIPS	REACTION PER FT WI PER FT WI	AT END/F DTH DTH DTH	3]
	Malysis of 1' wide Strip aci 318—89 Chapter 10 Span Length Mof Load Mudi@1/2= Muli@ 1/2 Mugi/2	SHORT SPAN 8 50 100 00% 5 56 1 65	LONG SPAN 13.00 0.00% 0.00 0.00 0.00	HEET FT-KIPS FT-KIPS FT-KIPS	REACTION PER FT WI PER FT WI PER FT WI	AT END/F DTH DTH DTH	3]
	Malysis of 1' wide Strip aci 318—89 Chapter 10 Span Length Mof Load Mudi@1/2= Muil@ 1/2 Mu@1/2 Mu@1/2	SHORT 8 PAN 8 50 100 00% 5 56 1 65 7,21	LONG SPAN 13.00 0.00% 0.00 0.00 0.00 0.00 0.00	FEET FT - KIPS	REACTION PER FT WI PER FT WI PER FT WI PER FT WI	AT END/F DTH DTH DTH	3]
	Malysis of 1' wide Strip aci 318—89 Chapter 10 Span Length Mof Load Mudi@1/2= Muii@ 1/2 Mu@1/2 Mu@1/2 Musid@1/2 b=	SHORT SPAN 8 50 100 00% 5 56 1 65 7,21 4,94	LONG SPAN 13.00 0.00% 0.00 0.00 0.00 0.00 0.00 12 3.56	FT-KIPS FT-KIPS FT-KIPS FT-KIPS FT-KIPS NCHES NCHES	REACTION PER FT WI PER FT WI PER FT WI WIDTH	I AT END/F DTH DTH DTH OTH DTH	3]
	AWALYSIS OF 1' WIDE STRIP ACI 318—89 CHAPTER 10 SPAN LENGTH %OF LOAD Mudi@i/2— Muii@ i/2 Mu@i/2 Muscd@i/2 b= d=	SHORT 8 PAN 8 50 100 00% 5 56 1 65 7,21 4,94 12 4 19	LONG SPAN 13.00 0.00% 0.00 0.00 0.00 0.00 12 12 3.56 0.125	FT-KIPS FT-KIPS FT-KIPS FT-KIPS FT-KIPS NCHES NCHES	REACTION PER FT WI PER FT WI PER FT WI WIDTH	I AT END/F DTH DTH DTH OTH DTH	T WIOTH
	ANALYSIS OF 1' WIDE STRIP ACI 318—88 CHAPTER 10 BPAN LENGTH %OF LOAD Mudi@1/2= Muil@1/2 Mused@1/2 b= d= Az req'd [Neg indicates As min] As prayided	SHORT SPAN 8 50 100 00% 5 56 1 65 7,21 4,94 12 4 19 0 408 0,409	LONG SPAN 13.00 0.00% 0.00 0.00 0.00 0.00 12 12 3.56 0.125	FEET FT - KIPS NCHES NCHES SQ INCHES	REACTION PER FT WI PER FT WI PER FT WI WIDTH	I AT END/F DTH DTH DTH OTH DTH	T WIOTH
	MALYSIS OF 1' WIDE STRIP ACI 318—89 CHAPTER 10 SPAN LENGTH %OF LOAD Mudi@I/2= Muil@ I/2 Mu@I/2 Mused@I/2 b= d= As reg'd [Neg indicates As min] As prayided	SHORT 8 PAN 8 50 100 00% 5 56 1 65 7,21 4,94 12 4 19 0 408 0,409 5	LONG SPAN 13.00 0.00% 0.00 0.00 0.00 0.00 12 12 3.56 0.125 0.262	FEET FT - KIPS	REACTION PER FT WI PER FT WI PER FT WI WIDTH	I AT END/F DTH DTH DTH OTH DTH	T WIOTH
	ANALYSIS OF 1' WIDE STRIP ACI 318—88 CHAPTER 10 BPAN LENGTH %OF LOAD Mudi@1/2= Muil@1/2 Mused@1/2 b= d= Az req'd [Neg indicates As min] As prayided	SHORT SPAN 8 50 100 00% 5 56 1 65 7,21 4,94 12 4 19 0 408 0,409	LONG SPAN 13.00 0.00% 0.00 0.00 0.00 0.00 12 12 3.56 0.125 0.262	FEET FT-KIPS FT-KIPS FT-KIPS FT-KIPS NCHES NCHES SQ INCHES SG INCHES	REACTION PER FT WI PER FT WI PER FT WI WIDTH	I AT END/F DTH DTH DTH OTH DTH	T WIOTH
	ANALYSIS OF 1' WIDE STRIP ACI 315—89 CHAPTER 10 SPAN LENGTH %OF LOAD Mudi@I/2= Muil@ I/2 Mused@I/2 b= d= As provided. REBAR SPACING	SHORT SPAN 8 50 100 00% 5 56 1 65 7,21 4,94 12 4 19 0 408 0,409 5	LONG SPAN 13.00 0.00% 0.00 0.00 0.00 0.00 12 3.56 0.125 0.262 4	Hegree of FEET FT-KIPS FT-KIPS FT-KIPS FT-KIPS FT-KIPS NCHES NCHES SQ INCHIS SQ INCHIS NCHES	REACTION PER FT WI PER FT WI PER FT WI WIDTH	I AT END/F DTH DTH DTH OTH DTH	T WIOTH
	ANALYSIS OF 1' WIDE STRIP ACI 315—89 CHAPTER 10 BPAN LENGTH %OF LOAD Mudi@1/2= Muil@1/2 Mused@1/2 b= d= As prayided REBAR SIZE # REBAR SPACING CRACK CONTROL-LONG WALL/IN	SHORT SPAN 8 50 100 00% 5 56 1 65 7,21 4,94 12 4 19 0 408 0,409 5	LONG SPAN 13.00 0.00% 0.00 0.00 0.00 12 3.56 0.125 0.262 4	Hegree of FEET FT-KIPS FT-KIPS FT-KIPS FT-KIPS FT-KIPS NCHES NCHES SQ INCHIS SQ INCHIS NCHES	REACTION PER FT WI PER FT WI PER FT WI WIDTH	I AT END/F DTH DTH DTH OTH DTH	T WIOTH
	ANALYSIS OF 1' WIDE STRIP ACI 315—89 CHAPTER 10 BPAN LENGTH %OF LOAD Mudi@1/2= Muil@1/2 Mused@1/2 b= d= As prayided As prayided REBAR SIZE # REBAR SPACING CRACK CONTROL-LONG WALL/IN: Z MAX 170	SHORT SPAN 8 50 100 00% 5 56 1 65 7,21 4,94 12 4 19 0 408 0,409 5 9	LONG SPAN 13.00 0.00% 0.00 0.00 0.00 12 3.56 0.125 0.262 4 9	Hegree of FEET FT-KIPS FT-KIPS FT-KIPS FT-KIPS FT-KIPS NCHES NCHES SQ INCHIS SQ INCHIS NCHES	REACTION PER FT WI PER FT WI PER FT WI WIDTH	I AT END/F DTH DTH DTH OTH DTH	T WIOTH
	ANALYSIS OF 1' WIDE STRIP ACI 318—88 CHAPTER 10 BPAN LENGTH %OF LOAD MUDIQUIZ= MUDIQUIZ= MUDIQUIZ MUDIQUIZ MUDIQUIZ MUDIQUIZ MUDIQUIZ MEDAR SIZE # REBAR SPACING CRACK CONTROL LONG WALL/IN Z MÁX 170	SHORT SPAN 8 50 100 00% 5 56 1 65 7,21 4,94 12 4 19 0 408 0,409 5 9	LONG SPAN 13.00 0 00% 0 00 0.00 0.00 12 3 56 0.125 0 262 4 9	Hegree of FEET FT-KIPS FT-KIPS FT-KIPS FT-KIPS FT-KIPS NCHES NCHES SQ INCHIS SQ INCHIS NCHES	REACTION PER FT WI PER FT WI PER FT WI WIDTH	I AT END/F DTH DTH QTH DTH	T WIOTH
	ANALYSIS OF 1' WIDE STRIP ACI 318—88 CHAPTER 10 BPAN LENGTH %OF LOAD Mudi@1/2= Muli@1/2 Muse/2 Muse/2 Mused@1/2 b= d= As reg'd [Neg indicates As min] As provided REBAR SIZE # REBAR SPACING CRACK CONTROL-LONG WALL/IN Z MÁX 170 bs dc	SHORT SPAN 8 50 100 00% 5 56 1 65 7,21 4,94 12 4 19 0 408 0,409 5 9 SIDE AA 170 XIF 30,47 KSI 1 81 INC	LONG SPAN 13.00 0 00% 0 00 0.00 0.00 12 3 56 0.125 0 262 4 9 SHTO 8 16,	Hegree of FEET FT-KIPS FT-KIPS FT-KIPS FT-KIPS FT-KIPS NCHES NCHES SQ INCHIS SQ INCHIS NCHES	REACTION PER FT WI PER FT WI PER FT WI WIDTH	I AT END/F DTH DTH DTH OTH DTH	T WIOTH
	ANALYSIS OF 1' WIDE STRIP ACI 318—88 CHAPTER 10 BPAN LENGTH %OF LOAD MUDIQUIZ= MUDIQUIZ= MUDIQUIZ MUDIQUIZ MUDIQUIZ MUDIQUIZ MUDIQUIZ MEDAR SIZE # REBAR SPACING CRACK CONTROL LONG WALL/IN Z MÁX 170	SHORT SPAN 8 50 100 00% 5 56 1 65 7,21 4,94 12 4 19 0 408 0,409 5 9 SIDE AA 170 XIF 30,47 XSI 1 81 INC 32 63 90	LONG SPAN 13.00 0 00% 0 00 0.00 0.00 12 3 56 0.125 0 262 4 9 SHTO 8 16,	Hegree of FEET FT-KIPS FT-KIPS FT-KIPS FT-KIPS FT-KIPS NCHES NCHES SQ INCHIS SQ INCHIS NCHES	REACTION PER FT WI PER FT WI PER FT WI WIDTH	I AT END/F DTH DTH QTH DTH	T WIOTH

7. Structural Design Calculations for Carbon Steel Tank

1.

و المالية

HUTER IT'S & THK

P.03

PALMEX MFG 9-14

TANK DATA

10' DEA X 7'-2" SIBEWALL

VERTHAL

1'-6" OVERBULDEN

1/4" BOTTOM GIL" TOP

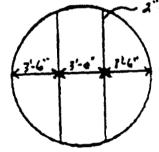
14" SHELL

WETH TANK SETTING VERTICALLY BURIED, JOINT BETWEEN Berrom BAND + BOTTOM SEES:

8-8" & S.4. = 1.7 = 6.38 PSi

TOP WILL SEE!

1-6" + Laus Loss = 1 97 PS;


SHELL DESIGN

Do : 120 : 480)

Pa = 2(0002)(30 x106) = 0.33 PS7 - 1/4" SHELL IS OK

TOP DESTAN

LUAN = 2.12 856

2"x 2' x 14" ANLLE

% = 2.33° a = 10'

x = .7560

y= -1268 (2.12)(36) y= .550" ACCEPTABLE

ANCHORAGE

TOTAL BOUYANT FORCE

Fg: 62.4 "/a" (550 Ft) = 34,520 165 7

REACTIONS AGAINST BOWHINCY

WETGET OF TANK - 4,990 lbs

1' LIP AROUND TANK - 19.6 FL (0' DEE) = 276.5 FL SOIL ON TOP OF TANK = 1'K (TI x 52 - 4'x5') = 58.5 ft = 276.5 FL (63.4 1/4)(1.3) = 40, 700 1/4 7

HATCH

VOLUME OF WET SOIL = 276 5 + 58.5 = 337.0 ft 44724

USE 90% = MAK WET DENSITY = 0.9 = 120 pcf = 108 pcf weight of weight of wet soil = 337.0 x 108 = 36,396

. BOUYANT FORE - 34,520 lbs 7

REACTIONS AGAZNET - 4.990 lbs 🔟

- 100 ths - 36,396 V

7,066 V

NET FORCE

TANK STALL REQUESTS ASOUT 10,000 165 OF

DOWNWARD

"-DOWNWARA" PEACETON TO COUNTRY ACT

THE GUTERG BOUTHWAY FORCE.

Solm vantorite

9/18/95

CONCLUSTON:

BOTTOM & SEDEWALL TO PE 1/4"

TOP TO BE 516" of 2"x 2" x 14" BRACONG

TOP + IN' DOWN STIEWALL TO BE SPRAY FOAM INSULATED.

TANY REGULTES - 210,000 /65 (5 - 49027500) TO RESIST

REFERENCES:

ROARES FORMULAS FOR STRESS + STRAIN PLESSURE VESSEL HANDROOK

ACT ---

TOTAL P.84

DATE.

SEP-18-1995 16:57

PALMER MAG & TANK

P.01

Page No

of

LOT

Puiner WG. & TANK INC. 44444

Proposal No. Proposal Good For:

Customer Inq. No:

Customer Ref.

Estimated Delivery

F.O.B. Point

JOB NAME-

JOB LOCATION-

THIS QUOTATION IS SUBJECT TO ALL PROVISIONS AND CONDITIONS ON THE REVERSE SIDE INCLUDING THOSE LIMITING WARRANTIES.

JOB PHONE-

☐ P O. 80X 1195 WEST HIWAY 50

[316] 275-7461 GARDEN CITY, KANSAS 67846

Quentity	Description	Unit Price	Total Pr
	10 dia x J'N, 4000 gal, westigal, flat hatton		-
	12'dia of claud, that tops, simplement atel		
	tank & winth insulated top, for 12" full	-	
——			
	hund deuth be low grade		
	Pande continuetiel of 4" a: 6:36 contrary stul		
	hatten and redewall with his Time with		
	2-2"x2"x 4" angle stiffeners. Per will be		
	wienlotted with 2 thet form insulation		
	coated with fibry here shell		
			↓
	make well be felted with		-
	1-6-Thrond outlet		
	J-197 197 197 1		
	1-48 × 440 flored	 	
. ,——	Intring Sill unto lovenice fate fort		
	artable winter isoly		

		FO.B. Point.		
	•	Terms -		
	· •	CUSTOMER PHONE	DATE INQUIRY	ECEIVED
	1	JOE NAME		
TH	S QUOTATION IS SUBJECT TO ALL PROVISIONS AND	JOB LOCATION—		•
	NDITIONS ON THE REVERSE SIDE INCLUDING THOSE LITING WARRANTIES.	JOB PHONE-		
	ره در المراجع	JOE PHONE—		
Ų	P.O. 80X 1195 WEST HIWAY 50 [316] 275-7461 GARDEN CITY, KANSAS 67846			
tuantity	Description		Unit Price	Total Pri
	Ellier elelucina trus	coated with		1
	Can Citus and	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	Let be the			
	- July 10gh			 -
	di u t di		 	-
	Fright & Denver area.		 	32.5
	matical line	115 1.		
	That Tout a requires 10.000" rol			
	reinstance. The Personies is mode	e me This quant	 	
-	The franchist	<u>~</u>	 	
•				
				 -
				}
				
		المستهدين وخوف المركور بالمستهد		
		By		
	Tall Spps 1-8	100-636-9136		
	Outside Stat			

SEP 18 '95 16 38

303 526 0449 PAGE 001

Welds

)

Bottom to sidewall 1/4"fillet weld each side

Top to sidewall
Inside 1/4" fillet weld, outside corner modified 1/4" butt weld

All other.
Full penetration 1/4" butt weld welded one-half way from each side

121

8. Uplift Calculations for Concrete Vault

148

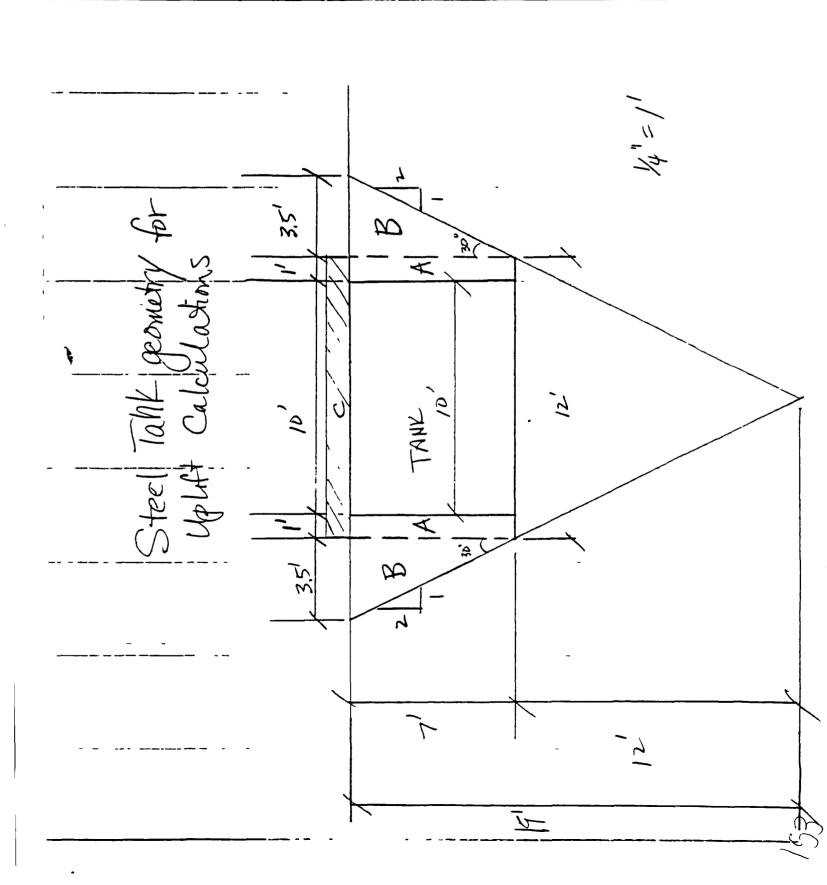
Weight o	f Concrete		pared to U	plift from I	Displaced
Weight of Concrete Tank (lbs	Length (ft)	Width (ft)	Depth (ft)	Volume of Displaced Water (ft ³)	Water
40,000	13	7	8	728	45,42
Calculate [Depth of dis	placed water	er so that w	eight of disp	placed
	is weight of				
	13		70	641 0	40,000
of groundw	Concrete ta vater up tan ept below 7	k side Bef	ore tank is f	illed, water	level
Calculate v	veight of wa	ter in tank			
	Length, Inside (ft)	Width, inside (ft) 6	Depth to Outflow Invert, Inside (ft)	Volume of Water in Tank (ft ³) 396 0	Weight of Water in Tank (lbs) 24,710
Weight of Concrete Tank (lbs	Weight of Water in Tank (lbs)	Weight of Tank + Water in Tank (lbs)			
40,000	24,710	64,710			
	is full, weig n weight of			tank is mud	ch
Assume Density of				lbs/ft ³	

Pf

9. Uplift Calculations for Carbon Steel Tank

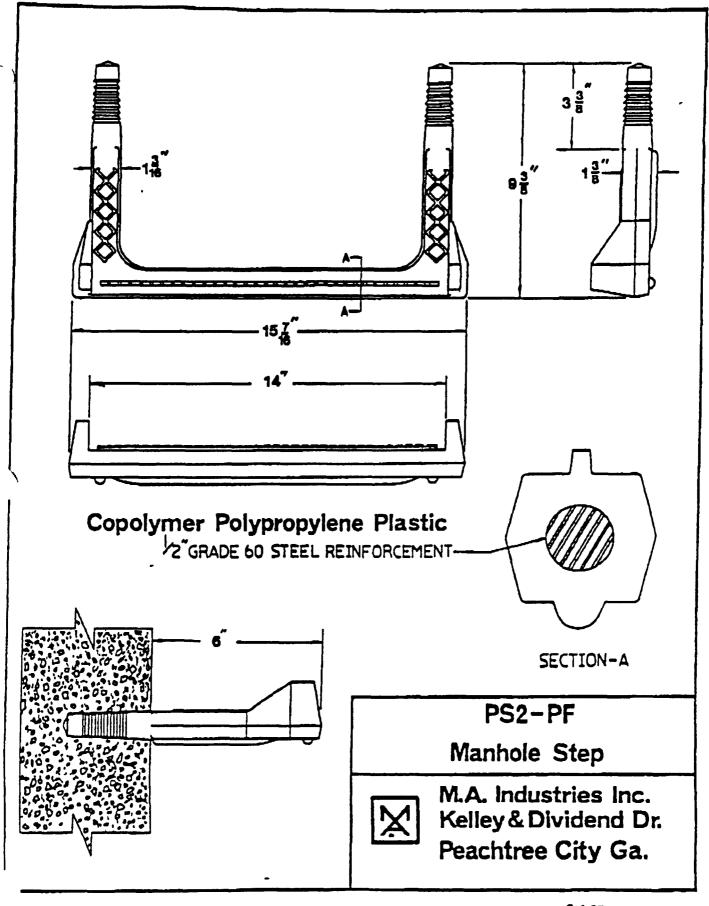
100

Calculation of	Soilload	Compand		m Diantas		Steel Tank
Calculation of	Son Load	Compared to	o upiliti iro	m Displace	d water for	Steel lank
For Steel Tank w	th 1 foot fla	inge around	bottom pen	meter (see	figure)	
		Volume of		Soil in Volume A,	Volume of Soil in Volume B,	Volume of soil on top of tank and flange, Volume C (ft ³) (one
	Height of		Diameter	V _{sA} (ft ³)	V _{s8} (ft³)	foot of
Diameter of	Tank, H	Displaced,	of Flange		(calculated	cover) = pi *
Tank (ft)	(ft)	V _w (ft ³)	(ft)	d below)	below)	$6^2 - (4 \times 5)$
10	7	550	12	242	552	93
			<u> </u>			
Description	Volume	Density	Downward force (Uplift)		i :	
Water Displaced	550	62 4	-34,306			
Soil A	242	108	26,126			
Soil B	552	108				
Soil C	93	108	10,055			
Weight of Tank			4,990			
SUMMATION			66,438			
	<u>L, , , , , , , , , , , , , , , , , , , </u>	L	L	L		
Weight of displac					downward fo	orces
This calculation is	nores the v	veignt of the	tank conter	าเร		
	ļ					
Accumo						
Assume	<u> </u>		60.4	lbs/ft ³		
Density of water				<u> </u>	(400 (+ 0)	
Density of saturat		thy above for		lbs/ft ³	(120 pcf * 0	an)
and soil in a "cor						
and by soil overt				Olullie D)		
and weight of tan		POOL (ADIDITIE	<u> </u>			
and weight of tall	Λ	!	L	L	!	l


15

)

	i					T
With saturation to	ground sur	face V = v	olume of cv	inder = pr	(r^2) • H	
	9.00		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		(
Weight of water of	r soil = volu	ıme * density	/			
For Volume A						
V _M = pi * (radius	outer^2 -	radius inner	^ 2) * H			
For Volume B						
dV = pi * r ^ 2 * c	ly					
for 30 degree and						
therefore, dV = p Integrate both sid			o 0			<u> </u>
V = pi * 0 25 * (y						
V _{sB} = volume of 1	9 foot high	cone - volun	ne of 12 foo	t high cone		
		12 foot dia				
	<u> </u>		Volume of			
		'	12 foot			
	Volume of 19 foot	1	dia x 7 foot high			
		12 foot high				
V _{s8} (ft ³)	(ft³)		(ft ³)			
552	1796	452	792			1


Stolle:

Out Passive Tratment

10. Product Specification Sheet for Manhole Step

154

2-6-87

11. Product Specification Sheets and Design Calculations for Link Seal Gaskets

156

Page 1

Link Seal Gasket Sizing

Ì

1

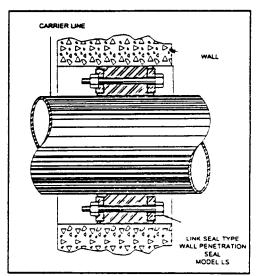
							For Non	For Non-Standard Diameters	Diameters
Penetration		Pipe Size,	Pipe Size, Penetration Link-Seal	Link-Seal	Links per		Annular		Link
Number	Description	(m) a o	Size (in)	Size No	Seal *	Source	Space (in)	Bolt Circle	Space (in) Bolt Circle Calculation
	3" Schedule 80 PVC Collection								
-	Pipe Into Settling Tank	3.5	2	LS-300	80	Table, p 9			
	Vent Pipe (3" PVC) into Settling								
7	Tank	3.5	2	LS-300	8	Table, p 9			
	3" PVC Pipe for High-Level								
က	Indicator in Settling Tank	3 5	2	LS-300	8	Table, p 9			
	3 x 2 PolyFio Pipe outflow for								
4	Settling Tank	3 035	2	LS-315	8	pp 12-13	0 9825	4 0175	8 3542715
	3 x 2 PolyFlo Pipe inflow for								
2	Treatment Tank	3 035	5 047	LS-315	8	pp 12-13	1 006	4 041	8 4031391
	2" Schedule 80 PVC Outflow Pipe								
9	for Treatment Tank	2 375	4 026	LS-300	9	Table, p 9			

When using calculation method for non-standard diameters on pp 12-13, round the result of "Link Calculation" down to the nearest integer

All Link-Seal gaskets shall be Model C, Type Standard, Seal Element EPDM Black, pressure plates composite, bolls and nuts steel zinc dichromate, temperature range (°F) -40 to +250

LINK-SEAL® SELECTION GUIDE

Simple 4-step method


For most applications, Link-Seal can be selected from the charts on pages 9, 10 and 11 (If your pipe and wall opening dimensions do not appear here, use the methods on pages 12 and 13)

- 1. There are 6 charts. Find the chart that applies and locate your pipe size.
- 2. Determine the type of wall opening to be used: CS Plastic sleeve, WS steel sleeve or core drilled hole.
- 3. Begin at column heading "Nominal Pipe Size". Then read across to the sizing section for CS plastic or WS steel sleeves or core bit drilled holes. The first column identifies the sleeve model or hole diameter .. the second column is the Link-Seal size number and the third column is

the number of links required for a complete seal assembly.

4. To order, add the Link-Seal model.

Select the model you require from the chart below Include the model letter designation with the sizing information, as in this example. Links per seal - 10, Link-Seal size number - LS-300, Model - C. Thus your order would read. 10 LS-300-C.

LINK SEAL MODELS

MODEL	TYPE	SEAL ELEMENT	PRESSURE PLATES	BOLTS & NUTS	TEMPERATURE RANGE (°F)	APPLICATIONS
С	Standard	EPDM Black	COMPOSITE	STEEL zinc dichromate	40 to + 250	Suitable for use in water direct ground burial and atmospheric conditions. Provides electrical insulation where cathodic protection is required.
S	Stainless	EPDM Black	COMPOSITE	STAINLESS STEEL (18 8)	-40 to + 250	For chemical processing waste water treatment EPDM rubber is resistant to most inorganic acids and alkalis some organic chemicals (acetone alcohol ketones)
0	Oil resistant	NITRILE Green	COMPOSITE	STEEL zinc dichromate	40 to + 210	Nitnle rubber is resistant to oils fuel and many solvents (gasoline motor oil kerosene methane jet fuel hydraulic fluid water etc.)
os	Oil resistant	NITRILE Green	COMPOSITE	STAINLESS STEEL (18 8)	-40 to + 210	Combination of oil resistant rubber and stainless steel hardware
Т	High/low temperature	SILICONE Grey	STEEL zinc dichromate	STEEL zinc dichromate	67 to + 400	Silicone rubber is ideal for temperature extremes T model is Factory Mutual approved
FD/ FS	Fireseals	SILICONE Grey	STEEL zinc dichromate	STEEL zinc dichromate	67 to + 400	Double seal three hour fire rated barrier (ANI approved)
М	Non insulating	EPDM Black	STEEL	STEEL zinc dichromate	40 to + 250	Commonly specified for a wide range of applications where cathodic protection is not required
⊤C	High temperature insulating	SILICONE Grey	STEEL Epoxy Coating	STEEL zinc dichromate	67 to + 400	High temperature applications where cathodic protection is required

158

NK-SEAL 1-800-288-040

LINK-SEAL® SIZING CHARTS FOR STANDARD DIAMETER PIPE

DUCTILE IRON PIPE (AWWA-TYPE)

	DOCTAL INON I II L (AW WA I II L)									
			MODEL STIC EVE		WS MOD STEEL SLEEVE)	CAST OF CORE BI DRILLED	т 💚 🕿	
PIPE SIZE (NOMINAL)	ACTUAL OUTSIDE DIAMETER (O D)	PLASTIC SLEEVE MODEL	LINK-SEAL SIZE NO	LINKS PER SEAL	STEEL SLEEVE MODEL	LINK-SEAL SIZE NO	LINKS PER SEAL	HOLE	LINK-SEAL SIZE NO	LINKS PER SEAL
2	2 500	CS-4-*	LS-300	6	WS-4-23-S-*	LS-300	6	4 000	LS 300	6
2-1/4	2 750	CS-5-*	LS-325	4	WS-5-25-S-*	LS-325	4	5 000	LS-325	5
3	3 960	CS-6-*	LS-325	5	WS-6-28-S-*	LS-325	5	6 000	LS-325	5
4	4 800	CS-8-*	LS-400	5	WS 8-32-S-*	LS-400	5	8 000	LS-400	5
6	6 900	CS-10-*	LS-400	7	WS-10-36-S-*	LS-400	7	10 000	LS-400	7
8	9 050	CS-12-*	LS-400	9	WS-12 37 S-*	LS-400	9	12 000	LS-400	9
10	11 100	CS-14-*	LS-400	11	WS 14-37 S *	LS-325	12 .	14 000	LS-400	10
12	13 200	CS-16-*	LS-400	12	WS 16-37-S-*	LS-325	14	16 000	LS-425	12
14	15 300	CS-18-*	LS-325	16	WS-18 37-S-*	LS-325	16	18 000	LS-425	14
16	17 400	CS-22-*	LS-400	16	WS-20 37 S-*	LS-325	18	20 000	LS-425	16
18	19 500	CS-24*	LS-400	18	WS-24-37 S-*	LS-475	25	24 000	LS-525	17
20	21 600	CS-25-*	LS-400	20	W\$-27 37-S-*	LS-525	19	26 000	LS-525	19
24	25 800	N/A	-	_	WS 30 37-S-*	LS-400	23	30 000	LS-575	28
30	32 000	N/A	-	-	WS 38 37 S	LS-500	27	36 000	LS-575	34
36	38 300	N/A	-	_	WS-44 1/2 37 S-	LS 500	33	43 000	LS-525	33
42	44 500	N/A	-	-	WS-50 1/2 37 S	LS 500	38	49 000	LS-525	38
48	50 800	N/A	-	1	WS 57-37 S-*	LS 500	43	56 000	LS 500	43
				COPP	ER TUBIN	1G				
1/2	625	CS-2-*	LS-275	4	WS-2 15-S	LS 275	4	2 000	LS-275	4
3/4	875	CS-3-*	LS-315	4	WS-2 15-S	LS-200	4	2 000	LS-200	4
1	1 125	CS-3-*	LS-300	4	WS 2 1/2 20 S	LS-275	5	3 000	LS-315	4
1-1/4	1 375	CS-3-*	LS-300	4	WS-3 21 S	LS 300	4	3 000	LS 300	4
1-1/2	1 625	CS-3-*	LS-200	6	WS-3 21 S	LS-275	7	3 000	LS 275-	7
2	2 125	CS-3-1/2-*	LS-200	7	WS 3 1/2 22 S-	LS 275	8	3 500	LS-275	8
2 1/2	2 625	CS-4-*	LS-275	10	WS-4 23-S	LS 275	10	4 000	LS-275	10
3	3 125	CS-5-*	LS-325	4	WS-5 25 S-	LS 325	4	5 000	LS 325	4
4	4 125	CS-6 *	LS-325	5	WS-6 28-S	LS 325	5	6 000	LS 325	5
6	6 125	CS-8 *	LS-325	7	WS-8 32 S	LS 325	7	8 000	LS 325	7
8	8 125	CS-10°	LS 325	9	WS-10 36 S	LS-325	9	10 000	LS 325-	9
10	10 125	CS 12	LS 325	11	WS 14 37 S	LS-400	10	14 000	LS-475	14
12	12 125	CS-14 *	LS 325	13	WS-16 37 S *	LS-400	12	16 000	LS-475	16

Specify sleeve length in inches

2 < 3 double-rmt 1° 1 pe 0D= 3.035 2" pipe= OD= 2.375 3" Pipe > OD= 3500

^{*} Specify model when ordening

CULATION METHOD FO

If your pipe size does not appear in the charts on pages 9, 10 or 11, use this method to select Link-Seal.

First, calculate the Annular Space in order to select your Link-Seal size from the chart on this page. Then determine the number of links required to go around the pipe. Here's how:

Step A

The Annular Space is half the difference between your pipe size and the wall opening diameter. Use this formula

Wall Opening - Pipe Diameter Annular Space =

Step B

Now go to Link-Seal Dimensional Chart #1 Select the size closest to the Annular Space just calculated You have selected the correct size Link-Seal if the Free State Thickness is less than the Annular Space and the Expanded State Thickness is greater than the Annular Space

Step C

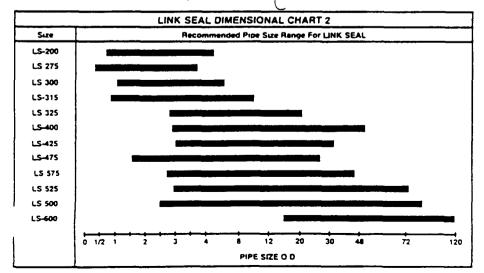
Next calculate how many links are required to fit around the pe and seal the Annular Space This is a 3-part calculation First determine the Bolt Circle for your Link-Seal assembly This is simply the mid-point of the Annular Space

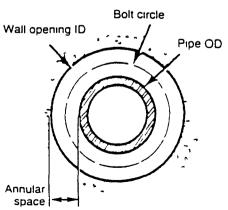
Wall Opening + Pipe Diameter Bolt Circle =

Step D

Second, determine the number of links needed for your assembly To do this, find the Chord Length of your Link-Seal size — in the right-hand column of Chart #1. Then multiply the Bolt Circle by 3 14 and divide by the Chord Length

Links Per Seal =


Bolt Circle x 3.14 Chord Length


Finally, the result must be rounded down to the next whole number. This completes your calculation. Now refer to page 8 and select a model designation IMPORTANT If the Step D calculation results in 10 or more links, it is accurate. If it indicates fewer than 10 links refer to the next page to verify your calculations

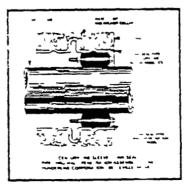
LINK-SEAL DIMENSIONAL CHART 1 CHORD LENGTH **EXPANDED STATE THICKNESS** FREE STATE THICKNESS

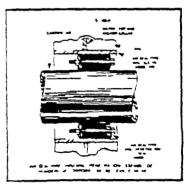
	SEALIN	IG RANGE	
SIZE	FREE STATE THICKNESS*	EXPANDED STATE THICKNESS	CHORD LENGTH
LS-200	50*	62*	1 125*
LS-275	62*	78"	0 910*
LS-300	71°	88*	1 510°
LS-315	82°	1 03	1 470°
LS 325	94*	1 18"	3 100°
LS-400	1 43	1 81*	3 625°
LS 425	1 13*	1 45	3 625
LS-475	1 62*	1 90*	2 625
LS 500	2 37*	2 81	3 860
LS 525	2 18	2 50	3 860
LS 575	1 81	2 35	3 100
L\$ 600	3 20	4 00"	6 000

*Free state thickness includes an insertion tolerance and therefore, differs from the actual thickness as listed in Link Seal technical data on page 19

K-SEAL® SIZING CHARTS FOR NDARD DIAMETER PIPE

STEEL AND PLASTIC PIPE WITH SAME OUTSIDE DIAMETER


		PLA	MODEL. ISTIC		WS MOI STEEL SLEEVE)	CAST OR CORE BI DRILLED	r William	
PIPE SIZE (NOMINAL)	ACTUAL OUTSIDE DIAMETER (O D)	PLASTIC SLEEVE MODEL	LINK-SEAL SIZE NO	LINKS PER SEAL	STEEL SLEEVE MODEL	LINK-SEAL SIZE NO	LINKS PER SEAL	HOLE I D	LINK-SEAL SIZE NO	LINKS PER SEAL
1/2	840	CS-2-*	LS-200	4	WS 2 15 S-*	LS 200	4	2 000	LS-200	4
3/4	1 050	CS-3-*	LS-300	4	WS 2 1/2-20 S-*	LS 2 75	5	2 500	LS-275	5
1	1 315	CS-3-*	LS-300	4	WS-2-1/2-20-S-*	LS 200	5	3 000	LS-300	4
1-1/4	1 660	CS-3-*	LS-200	6	WS-3 21-S-*	LS 2 75	7	3 000	LS 275	7
1-1/2	1 900	CS-3-1/2-*	LS-275	8	WS 3 1/2-22-S-*	LS 300	5	3 500	LS-300	5
2	2 375	CS-4.	LS-300	6	WS-4-23-S-*	LS 300	6	4 000	LS 300	6
2-1/2	2 875	CS-4	LS-200	9	WS-4 23 S-*	LS 200	9	4 000	LS-200	9
3	3 500	CS-5-*	LS-300	8	WS-5-25-S-*	LS 300	8	5 000	LS-300	8
3-1/2	4 000	CS-6-*	LS-325	5	WS-6 28 S-*	LS 325	5	6 000	LS-325	5
4	4 500	CS-6-*	LS-300	10	WS-6-28 S*	LS 000	10	6 000	LS 300	10
5	5 563	CS-8-*	LS-425	6	WS 8 32 S-*	LS25	6	8 000	LS-425	6
6	6 625	CS-10-*	LS-475	10	WS 10 36-S *	LS-475	10	10 000	LS-475	10
8	8 625	CS-12-*	LS-475	12	WS 12 37 S	LS-475	12	12 000	LS-475	12
10	10 750	CS-14-*	LS-400	10	WS 14 37 S-*	LS25	10	14 000	LS-400	10
12	12 750	CS-16-	LS-400	12	WS 16 37-S-*	LS-4 ⁵	12	16 000	LS-400	12
14	14 000	CS-18-*	LS-400	13	WS 18 37 S	LS-400	13	18 000	LS-575	16
16	16 000	CS-20-*	LS-400	15	WS 20 37 S	LS 400	15	20 000	LS-575	18
18	18 000	CS-24-*	LS-525	16	WS 24 37 S	LS 500	16	22 000	LS-575	20
20	20 000	CS-25-*	LS-525	18	WS 24 37 S	LS-400	18	24 000	LS-575	22
22	22 000	CS-25-*	LS-425	20	WS 26 37 S *	LS-4CO	20	26 000	LS-575	24
24	24 000	N/A		-	WS 30 37 S	LS 500	21	28 000	LS-575	26
26	26 000	N/A	-	-	WS 30 37 S	LS-4CO	23	30 000	LS 575	28
28	28 000	N/A	-	-	WS 34 37 S	LS 500	24	32 000	LS-575	30
30	30 000	N/A			WS 36 37 5 °	LS 5 00	26	34 000	LS-575	32
32	32 000	N/A		_	WS 38 37 S	LS 50-)	27	36 000	LS 575	34
34	34 000	N/A	-	_	WS-40 37 S-*	LS 50-)	29	38 000	LS 575	36
36	36 000	N/A	-	_	WS 42 37 S	LS 500	30	40 000	LS-575	38
42	42 000	N/A			WS 48 37 S	LS 50	36	46 000	LS-575	44
48	48 000	N/A	-		WS 54 37 S	LS 50	41	52 000	LS-575	50


Specify sleeve length in inches Specify mode/ when ordering

ENGINEERING DECALS

These LINK-SEAL design decals are yours for the asking They simplify your drawings and assure proper ordering procedure

> (Shown at reduced size Actual decal measures 3 1/4 x 3 1/2")

1-800-288-0404 LINK-SEAL

LINK-SEAL® SIZING CHARTS FOR STANDARD DIAMETER PIPE

CAST IRON SOIL PIPE (EXTRA HEAVY)

		PLA	MODEL ASTIC SEVE		WS MOI STEEL SLEEVE)	CAST OF CORE BI DRILLED	п 🐃 🛌	
PIPE SIZE (NOMINAL)	ACTUAL OUTSIDE DIAMETER (O D)	PLASTIC SLEEVE MODEL	LINK-SEAL SIZE NO	LINKS PER SEAL	STEEL SLEEVE MODEL	LINK-SEAL SIZE NO	LINKS PER SEAL	HOLE	LINK-SEAL SIZE NO	LINKS PER SEAL
2	2 380	CS-4-*	LS-300	6	WS-4-23-S-*	LS 300	6	4 000	LS 300	6
3	3 500	CS-5-*	LS-300	8	W\$ 5-25-S-*	LS 300	8	5 000	LS-300	8
4	4 500	CS-6-*	LS-300	10	WS-6-28-S-*	LS-300	10	6 000	LS-300	10
5	5 500	CS-8-*	LS-425	6	WS-8-32-S-*	LS-425	6	8 000	LS-425	6
6	6 500	CS-10-*	LS-475	10	WS-10-36-S-*	LS-475	10	10 000	LS-475	10
8	8 620	CS-12-*	LS-475	12	WS-12-37-S-*	LS-475	12	12 000	LS-475	12
10	10 750	CS-14-*	LS-400	10	WS-14 37-S-*	LS-425	10	14 000	LS-400	10
12	12 750	CS-16-*	LS-400	12	WS-16-37-S-*	LS-425	12	16 000	LS-400	12
15	15 880	CS-20-*	LS-400	15	WS-20-37 S*	LS-400	15	20 000	LS-575	18
CAST IRON SOIL PIPE (SERVICE WEIGHT)										
2	2 300	CS-4-*	LS-300	6	WS-4 23 S-*	LS-300	6	4 000	LS-300	6
3	3 300	CS-5-*	LS-315	8	WS 5 25 S-*	LS-315	8	5 000	LS-315	8
4	4 300	CS-6-*	LS-315	11	WS-6-28-S-*	LS 315	10	6 000	LS-315	10
5	5 300	CS-8-*	LS-425	6	WS-8 32 S-*	LS-425	6	8 000	LS-425	6
6	6 300	CS-8-*	LS-325	7	WS 10-36 S-*	LS-475	10	10 000	LS-475	10
8	8 380	CS-12-*	LS-475	12	WS 12 37 S-*	LS-475	12	12 000	LS-475	12
10	10 500	CS-14-*	LS-475	15	WS-14 37-S-	LS-425	10	14 000	LS-475	14
12	12 500	CS-16-*	LS-475	17	WS-16 37 S-*	LS 425	12	16 000	LS-475	17
15	15 620	CS-20-*	LS-475	21	WS 20 37 S*	LS-475	21	20 000	LS-525	14
	F	LECT	RICAL	METAI	LLIC TUB	ING (TH	IIN W	ALL)	-	
1/2	706	CS-2-*	LS-200	4	WS-2 15 S-	LS-275	4	2 000	LS 275	4
3/4	922	CS-3-*	LS-315	4	WS 2 15 S °	LS-200	4	2 000	LS-200	4
1	1 163	CS-3-*	LS-300	4	WS 3 21 S-	LS-315	4	3 000	LS-315	4
1-1/4	1 510	CS-3-1/2 *	LS-315	5	WS 3 21 S-*	LS 300	4	3 000	LS-300	4
1-1/2	1 740	CS-3-1/2-*	LS-300	5	WS 3 1/2 22 S-	LS 315	5	3 500	LS-315	5
2	2 197	CS-4-*	LS-315	6	WS-4 23 S	LS 315	6	4 000	LS-315	6
2 1/2	2 875	CS-4-*	LS-200	9	WS-4 23 S	LS 200	9	4 000	LS-200	9
3	3 500	CS-5-*	LS-300	8	W\$ 5 25 S	LS 300	8	5 000	LS 300	8
4	4 500	CS-6-*	LS 300	10	WS 6 28 S	LS 300	10	6 000	LS-300	10

Specify sleeve length in inches Specify model when ordering

ART METHOD

This page is needed for approximately 3% of all applications. It helps you select Link-Seal when you can't find your pipe size in the standard charts and when your calculation results in fewer than 10 links.

You already have the Link-Seal size and quantity from the calculation on the previous page. You also know the wall opening dimension. This chart will confirm whether or not the selected Link-Seal will fit correctly into the opening

Here's how to use it

Go to the chart for the Link-Seal size already determined (LS-200, LS-300, etc.)

Compare the pipe size you are using with Pipe O D Range #1 or #2 Depending on which range your size falls into, follow the directions at the top of the column.

The chart gives you minimum and maximum wall opening dimensions If your wall opening size falls between the minimum and maximum wall opening sizes calculated from the chart, it is correct

The chart also gives you the number of links required for your assembly (on the same line as your pipe O D)

If your wall opening size is not in the range indicated by the chart, either choose another Link-Seal size change your wall opening size, or call us for assistance

EXAMPLE:

If your Link-Seal size is LS-300

And if your pipe is 2 900

You locate it in Range #2 on the LS-300 chart

The minimum wall opening is 2 900 (the pipe size plus 1 437 from col B or 4 337

The maximum wall opening is 2 900 plus 1 750 from Col C or 4 65

The number of links is 7 (on the same line as the pipe O D range) To select simply state the number of links the Link-Seal size and the model number chosen from the chart on page 8

PIPE 0 D RANGE # 1 MIN WALL OPENING = A MAX WALL OPENING = PIPE 0 D + C	PIPE 0 D RANGE # 2 MIN WALL OPENING = PIPE 0 D + B MAX WALL OPENING - PIPE 0 D + C	MINIMUM WALL OPENING FOR PIPE O D IN RANGE	B MINIMUM WALL OPENING ADD ON FACTOR FOR PIPE IN RANGE # 2	C MAXIMUM WALL OPENING ADD ON FACTOR	LINKS PER SEAL
	LS-200 S	IZING C	HART		
687 937 1 125 1 375 1 625 - 1 875 2 000 - 2 125 2 375 - 2 500 2 687 - 2 812 3 125 - 3 375	937 - 1 125 1 375 - 1 500 1 875 - 1 937 2 125 - 2 375 2 500 - 2 812 2 812 - 3 125 3 375 - 3 625	1 93 2 375 2 875 3 125 3 500 3 812 4 375	1 CJ 1 03 1 03 1 00 1 00 1 00	1 12 12 12 12 125 125	4 5 6 7 8 9
	LS-275 S	IZING C	HART		
580 - 660 830 940 1 070 - 1 220 1 300 - 1 480 1 570 - 1 780 1 770 - 2 030 2 050 - 2 330	660 - 720 940 - 1 050 1 220 - 1 370 1 480 - 1 660 1 780 - 2 000 2 030 - 2 280 2 330 2 620	1 870 2 220 2 530 2 850 3 150 3 460 3 750	1 220 1 280 1 320 1 360 1 400 1 420 1 420	1 5c0 1 560 1 560 1 560 1 560 1 560 1 560	4 5 6 7 8 9
	LS-300 S	ZING C	HART		
1 125 - 1 312 1 562 - 1 875 2 062 2 375 2 562 - 2 875 3 062 3 375 3 562 3 937 4 000 4 375	1 3 2 1 437 1 8 5 2 000 2 3 5 2 687 2 8 5 3 125 3 3 5 3 812 3 907 4 125 4 3 7 5 4 750	2 875 3 312 3 812 4 312 4 812 5 312 5 750	1 562 1 407 1 437 1 437 1 437 1 374	1 750 1 75 1 75 1 75 1 75 1 75 1 750 1 750	4 5 6 7 8 9
	LS-315 S	ZING C	HART		
870 995 1 260 1 545 1 670 2 070 2 140 2 575 2 270 3 025 2 740 3 485 3 610 3 940	995 1 065 1 545 1 670 2 070 2 260 2 574 2 820 3 02 3 330 3 48 3 800 3 94 4 260	2 930 3 320 3 730 4 200 4 700 5 190 5 675	1 920 1 780 1 660 1 621 1 661 1 701 1 721	2 060 2 060 2 060 2 060 2 060 2 060 2 060	4 5 6 7 8 9
	LS-325 S	IZING C	HART		
2 875 2 875 3 625 4 000 4 625 5 000 5 625 6 000 6 625 7 000 7 625 8 000 8 625 9 000	2 875 3 125 4 000 4 250 5 000 5 250 6 000 6 500 7 000 7 625 8 000 8 625 9 000 9 625	5 250 6 000 7 000 8 000 9 000 10 000 11 000	2 375 2 000 2 000 2 000 2 000 2 000 2 000 2 000	2 375 2 375 2 375 2 375 2 375 2 375 2 375 2 375	4 5 6 7 8 9
	LS-400 S				
2 875 2 875 3 875 4 250 5 000 5 250 6 125 6 500 7 250 7 875 8 375 9 125 9 500 10 250 10 625 11 370 11 750 12 500	2 87: 3 500 4 250 4 750 5 250 6 125 6 500 7 250 7 875 8 500 9 125 9 1750 10 250 11 250 11 370 12 125 12 500 13 375	6 500 7 500 8 625 9 750 10 875 12 000 13 125 14 250 15 375	3 230	3 625 3 625 3 625 3 625 3 625 3 625 3 625 3 625 3 625	4 5 6 7 8 9 10 11 12

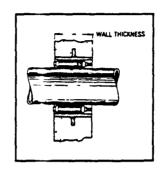


CHART METHOD FOR NON-STANDARD DIAMETERS

PIPE 0 D RANGE # 1 MIN WALL OPENING A MAX WALL OPENING PIPE 0 D + C	PIPE 0 D RANGE # 2 LIN WALL OPENING PIPE 0 D + 8 MAX WALL OPENING PIPE 0 D + C	A MINIMUM WALL OPENING FOR PIPE O D IN RANGE	B MINIMUM WALL OPENING ADD-ON FACTOR FOR PIPE IN RANGE	C MAXIMUM WALL OPENING ADD ON FACTOR	LINKS PER SEAL
			#2		
	LS-425 S				
3 00 - 3 500 4 125 - 4 500 5 250 - 5 750 6 500 - 7 000 7 625 8 250 8 750 - 9 250 9 875 - 10 500 10 937 11 562	3 500 -3 500 4 500 - 4 875 5 750 - 6 250 7 000 - 7 500 8 250 - 8 750 9 250 10 000 10 500 - 11 000 11 562 - 12 187	6 000 7 125 8 250 9 500 10 750 11 750 12 875 13 937	2 500 2 625 2.500 2.500 2.500 2.500 2 375 2.375	3 000 3 000 3 000 3 000 3 000 3 000 3 000	4 5 6 7 8 9 10
12 125 12 875	12 875 - 13 500	15 125	2.375	3 000	12
1 375 - 1 687	LS-475 S			4 000	<u> </u>
2 250 - 2 562 3 125 - 3 562 3 875 - 4 375 4 875 - 5 375 5 625 - 6 125 6 375 - 6 875 7 250 - 7 750 8 000 - 8 625	2 562 - 2 812 3 562 - 3 875 4 375 - 4 750 5 375 - 5 750 6 125 - 6 500 6 875 - 7 375 7 750 - 8 375 8 625 - 9 250	5 375 6 250 7 125 7 875 8 875 9 625 10 375 11 250 12 000	3 688 3 688 3 563 3 500 3 500 3 500 3 500 3 375	4 000 4 000 4 000 4 000 4 000 4 000 4 000 4 000 4 000	4 5 6 7 8 9 10 11 12
	LS-500 S	IZING C	HART		
2 375 - 2 375 3 375 - 3 625 4 375 - 4 812 5 625 - 6 250 6 750 - 7 500 8 000 - 8 750 9 125 - 10 000 10 500 - 11 375 11 750 - 12 625	2 375 - 2.500 3 625 - 4 000 4 812 - 5 375 6 250 - 7 000 7 500 - 8 375 8 750 - 9 500 10 000 - 10 750 11 375 - 12 250 12 625 - 13 500	8 000 9 000 10 000 11 250 12 375 13 625 14 750 16 125 17 375	5 625 5 375 5 188 5 000 4 875 4 875 4 750 4 750 4 750	5 625 5 625 5 625 5 625 5 625 5 625 5 625 5 625 5 625	4 5 6 7 8 9 10 11
	LS-525 S	IZING C	HART		
2 750 - 2 750 3 750 3 750 5 000 - 5 000 6 000 - 6 250 7 125 - 7 625 8 562 9 062 9 750 - 10 375 10 811 11 437	2 750 - 2 875 3 750 - 4 250 5 000 - 5 625 6 250 - 7 062 7 625 - 8 250 9 062 - 9 750 10 375 - 10 875 11 437 - 12 312 12 750 - 13 625	7 750 8 750 10 000 11 000 12 125 13 562 14 750 15 811 17 125	5 000 5 000 5 000 4 750 4 500 4 500 4 375 4 375 4 375	5 000 5 000 5 000 5 000 5 000 5 000 5 000 5 000	4 5 6 7 8 9 10 11 12
	LS-575 S	IZING C	HART		
1 57 1 57 2 40 2 73 3 30 3 83 4 25 4 90 5 20 5 94 6 17 6 98 7 13 8 00 8 11 9 02 9 08 10 03	1 57 - 1 76 2 73 - 2 96 3 83 - 4 12 4 90 - 5 25 5 94 6 36 6 98 - 7 46 8 00 - 8 56 9 02 - 9 65 10 03 - 10 73	6 28 7 11 8 01 8 96 9 91 10 87 11 84 12 81 13 79	4 71 4 38 4 18 4 06 3 97 3 90 3 84 3 80 3 76	4 71 4 71 4 71 4 71 4 71 4 71 4 71 4 71	4 5 6 7 8 9 10 11

GENERAL INFORMATION

MINIMUM THICKNESS

Link-Seal Model	Minimum Wall Thickness
LS 200/LS 275	2 1/4°
LS 300/LS 315	3"
LS 325	4"
LS 400/LS-425 LS-475	5*
LS 500/LS-575 LS 525	5"
LS 600	6"

Mi iimum Wall Thickness

Shown in the chart above, right, is the minimum wall thickness (or recommended seating area) required to ascure a proper seal with each Link-Seal mode. The dimensions shown are liberal, and can be reduced if necessary. Consult factor for "absolute minimums"

INSTALLATION NOTES

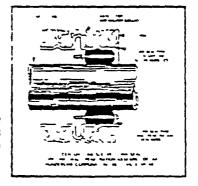
Link-Seal Model	Bolt Head Size
LS-200/LS-275	M5 slotted hex head
LS 300/LS-315 LS 325	1/2" HEX
LS-400/LS-425 LS-475	9/16" HEX
LS 500/LS-575 LS 525	3/4" HEX
LS-600	1/ 1/8" HEX

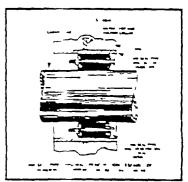
WEIGHTS

M od el No	Weight for 10 Link Section
LS 200 C/LS 275	75
LS 300 C	2 00
LS 315 C	3 00
LS 325 C	5 50
LS-400 C	12 00
LS-425 C	10 00
LS-475 C	10 00
LS 500 C	27 00
LS 525 C	25 25
LS 575 C	15 00

K-SEAL® SIZING CHARTS FOR NDARD DIAMETER PIPE

STEEL AND PLASTIC PIPE WITH SAME OUTSIDE DIAMETER


		CS MODEL PLASTIC SLEEVE		WS MODEL STEEL SLEEVE			CAST OR CORE BIT DRILLED HOLE			
PIPE SIZE (NOMINAL)	ACTUAL OUTSIDE DIAMETER (O D)	PLASTIC SLEEVE MODEL	LINK-SEAL SIZE NO	LINKS PER SEAL	STEEL SLEEVE MODEL	LINK-SEAL SIZE NO	LINKS PER SEAL	HOLE	LINK-SEAL SIZE NO	LINKS PER SEAL
1/2	840	CS-2-*	LS-200	4	WS 2 15 S °	LS 200	4	2 000	LS 200	4
3/4	1 050	CS-3-*	LS-300	4	WS-2 1/2 20 S-*	LS-275	5	2 500	LS 275	5
1	1 315	CS-3-*	LS-300	4	WS-2 1/2 20-S	LS-200	5	3 000	LS-300	4
1-1/4	1 660	CS-3-*	LS-200	6	WS 3 21 S-*	LS 275	7	3 000	LS 275	7
1-1/2	1 900	CS-3-1/2-*	LS-275	8	WS 3 1/2 22-S-	LS-300	5	3 500	LS-300	5
2	2 375	CS-4-*	LS-300	6	WS-4 23 S-°	LS-300	6	4 000	LS-300	6
2- 1/2	2 875	CS-4	LS-200	9	WS-4 23 S *	LS-200	9	4 0 00	LS 200	9
3	3 500	CS-5-*	LS-300	8	WS-5 25-S-*	LS-300	8	5 0 00	LS-300	8
3-1/2	4 000	CS-6-*	LS-325	5	WS-6 28 S-°	LS 325	5	6 0 00	LS 325	5
4	4 500	CS-6-*	LS-300	10	WS-6 28 S°	LS-300	10	6 0 00	LS-300	10
5	5 563	CS-8-*	LS-425	6	WS 8 32 S-*	LS-425	6	8 0 00	LS-425	6
6	6 625	CS-10-°	LS-475	10	WS-10 36 S-*	LS-475	10	10 0 00	LS-475	10
8	8 625	CS-12-*	LS-475	12	WS-12 37-S-°	LS-475	12	12 00 0	LS-475	12
10	10 750	CS-14-*	LS-400	10	WS 14 37 S	LS-425	10	14 0 00	LS-400	10
12	12 750	CS-16-*	LS-400	12	WS 16 37-S-*	LS-425	12	16 00 0	LS-400	12
14	14 000	CS-18-*	LS-400	13	W\$-18 37-S *	LS-400	13	18 0 00	LS 575	16
16	16 000	CS-20-*	LS-400	15	W\$ 20 37 S-*	LS-400	15	20 0 00	LS 575	18
18	18 000	CS-24-*	LS 525	16	WS 24 37 S-	LS 500	16	22 0 00	LS 575	20
20	20 000	CS 25-*	LS-525	18	WS 24 37-S *	LS-400	18	24 0 00	LS 575	22
22	22 000	CS 25-*	LS-425	20	WS 26 37 S *	LS-400	20	26 0 00	LS 575	24
24	24 000	N/A		_	WS 30 37 S	LS 500	21	28 0 00	LS 575	26
26	26 000	N/A	_		WS 30 37 S-	LS-400	23	30 00 0	LS 575	28
28	28 000	N/A	-		WS 34 37 S *	LS-500	24	32 00 0	LS-575	20
30	30 000	N/A	-		WS 36 37 S	LS 500	26	34 00 0	LS 575	02
32	32 000	N/A	-		WS 38 37 S	LS 500	27	36 00 0	LS 575	04
34	34 000	N/A	-	-	WS 40 37 S	LS 500	29	38 0 00	LS 575	36
36	36 000	N/A	-		WS 42 37 S	LS 500	30	40 00 0	LS 575	38
42	42 000	NA	-		WS -8 37 S	LS 500	36	46 00 0	LS 575	4.,
48	48 000	N/A	_	-	WS 54 37 S	LS 500	41	52 00 0	LS 575	50

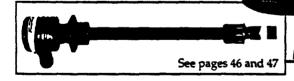

Specify sleeve length in inches Specify model when ordering

ENGINEERING DECALS

These LINK-SEAL design decals are yours for the asking They simplify your drawings and assure proper oldering procedure

> (Shown at reduced size Actual decal measures 3 1/4 × 3 1/2")

1-800-288-0404 LINIE-SEAL


12. Product Specification Sheets for High Level Indicator and Leak Detection Indicator

ertical Buoyancy Sensors

- Unique filling baffle eliminates surface chatter
- Dynamically stabilized float
- Selectable normally open or normally closed states
- Mounted vertically wet or dry
- Available in quality reed switch, FET switch, 4 or 20mA, TTL and voltage output
- IP68 submersible sensor body and cable

Flowline's Advanced Vertical Buoyancy Sensors

are technically the most advanced float available today The filling baffle causes the float to be filled below the liquid surface, thereby eliminating the effects of surface tension The self flushing design also encourages particulate matter to be purged through the baffles The sensors are conveniently available in a reed switch. FET switch, 4 or 20mA, TTL or voltage outputs

Specifications Accuracy Repeatability Dead band hysteresis

MYUOUYA

Max temp rating Max pressure rating Specific gravity range Extreme position

Wetted materials

Max switching current 15 VA @ 120VAC

Signal output (reed version)

Current output (FET version)

FET switch voltage FET switch current

FET switch mode

Standard cable length Max cable run

±2mm in water ±1mm in water

5mm in water Polypropylene (PP) or PVDF 90°C (194°F) **Ambient** 6 to 12 ±20° from vertical for large, 50 VA @ 120 VAC for small switch

Dry switch closure, selectable, NO or NC states

Enclosure rating

Dimensions

Dry 4mA Wet 20mA 0 to 36 VDC 100mA max (independent of supply) Selectable, NO or NC states IP68 (NEFA 6) Submersible sensor and cable 8 ft Up to 500 ft 45 x 105 or

 275×105 (3/4" NPT)

Vertical buoyancy sensor cut away Patent Pending

Ordering Information

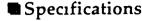
Potti seed switch LFT ami	ich and 4 or 20mA (
Part #		Marl Size	A CONTRACT OF THE PARTY OF THE	Price
zLV10-1301	Sensor-reed switch			
7LV10-5301 7 0 3 3 7 1 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3				
LV10-530 -2 or 3	Sensor-F.E.T. switch	PVDF A-4.5	8/4".NPT	.\$250 00 £
LV10-1201	sensor-reed switch	PP 275	x3/4 NPT	\$6500
LV10-120-2 or 3 7 2 3	ensor F.E.Thewatch	PP 275	X8/4"NPT	\$105.00
LV10-520 22 or 3 (17)	Control of the last of the las	るると人のないので	Total State of	\$210,00
3, for FE Rorder 2 for N cha	nnel, 3 for P chann	el		W. K.

trobe Alert™ Single Sensor Controller (DC)

Calls immediate attention to alarm conditions

High intensity strobe light reduces operator error

Convenient reminder to refill tank


Mounts directly on sensor or Smart Trak™

Adjustable time delay relay

Controls pumps, valves and alarms.

Swivels on base for easy conduit alignment

Flowline's® DC "Strobe Alert"TM calls immediate attention to alarm conditions For operator alert to low inventory levels or high alarm conditions, the "Strobe Alert" offers an excellent solution to these problems. An amber lens distributes the high intensity strobe light in a pattern which calls immediate attention to alarms. The visual alert combined with a controller makes it both a cost effective and easy to install device. The controller can be mounted on a sensor or Smart TrakTM

Voltage input Max current consumption Lighting element

Brightness

Relay output

Switching mode

Relay switching voltage Max switched current Time delay

Max temp rating Sensor volt supply

Sensor trigger pt

Mntg connection Conduit connection 1/2 NPT Enclosure material

Enclosure rating Dimensions

14 to 36 volts DC 25 amps

> High Intensity Lamp Greater than 50,000 CP Isolated and sealed single pole double throw (SPDT) relay, Form C Selectable, NO

14 to 36 VDC

or NC states

6 amps Adjustable from 0 15 to 60 seconds 70°C (158°F) Nominal 13 volts DC, 1 watt ma Dry < 12mA or Wet > 12mA

3/4 NPT Polypropylene (PP), flame retardant (UL 94VO)

NEMA 4X (IP65) $28 \times 55 \times$ 3/4 NPT

For agency approved ratings contact Flowline Inc or your distributor

No cut sheet available for model LC09-1004 voltage input = 12 to 36 VDC relay su thing 10/tage-12 to 36 VDC Difference= No controller () inst junction box

Ordering Information

Description C09-1002 ", "Strobe Alert" single-

sensor controller

mart Trak™ Mounting Systems

- Adjustable in-tank mounting system
- Mounts up to four sensors
- Mixer compatible with rotational velocities of up to 15 fps
- Optional side mount bracket conveniently mounts Smart Trak to tank wall
- Permits different sensing technologies for additional safety
- Easy to adjust with changing processes
- Integral controller options available

Flowline's® Smart Trak™ is

an in-tank mounting system that nables the user to install and adjust up to four Flowline sensors of any technology to any depth along the entire length of the track Smart Trak is made entirely of polypropylene and as available in two, four or six foot lengths Lengths of up to 20 feet can be special ordered

Select Smart Trak for mixing applications with radial velocities up to 15 fps Smart Trak mounts vertically through the top of the tank with a standard 2" NPT rotational tank adapter Each Smart Trak kit includes a 2' NPT fitting assembly, a two, four or six foot Smart Trak section, and one sensor car Additional sensor cars can be purchased separately

Side Mount Bracket

Specifications

Track length Available in 2, 4, 6 ft

Wetted material

20% glass filled Polypropylene

(PP)

Mounting threads

2" NPT tank adapter 90°C (194°F)

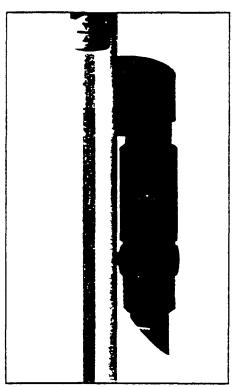
Max temp rating Sensor car

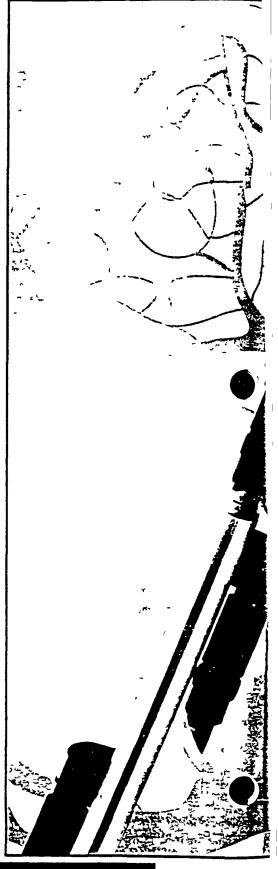
adjustment

Along the entire length of track

Mntg orientation Radial velocities Dimensions

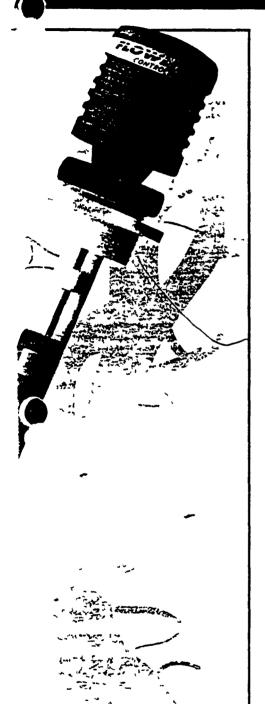
Vertical Up to 15 fps 1' square by lengths of 2, 4

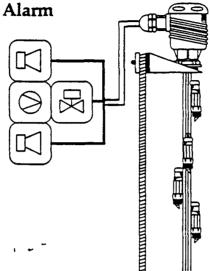

and 6 ft

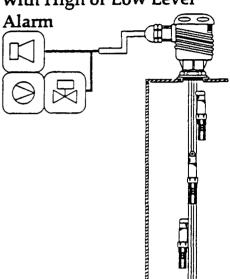

Side mount bracket 6 x 3 2 x 2' Side mount bracket mntg method

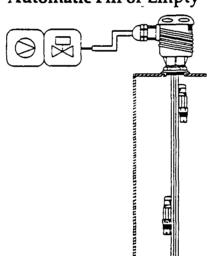
Bolted or welded to side wall of

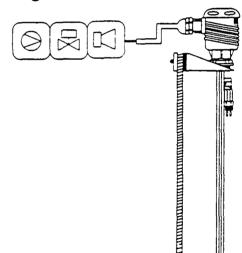
tank


Smart Trak Sensor Car






Automatic Fill or Empty with High and Low Level


Automatic Fill or Empty with High or Low Level

Automatic Fill or Empty

High or Low Level Switch

Ordering Information

THE DESCRIPTION

NAME OF THE PROPERTY OF THE P

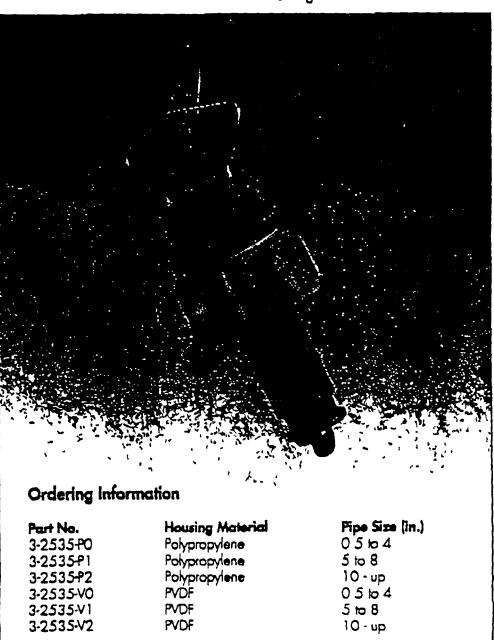
Property of the control of the contr

7000 96 31000 2200 32000 7 6000 3000

व्यवस्थात है। है। इस न्या मिन्य के हैं। इस न्या मिन्य है।

13. Product Specification Sheets for Flow Sensor and Flow Transmitter

SIGNET 2535 Rotor-X Low Flow Sensor


Description

The SIGNET 2535 RotorX Low Flow Sensor is ideal for measuring flow in piping systems with extremely low velocities. Utilizing insertion paddlewheel technology, the 2535 is easy to install and maintain.

The 2535 combines Hall Effect sensing with the advantages of insertion paddlewheel technology. This technology allows the 2535 to be used in low velocity applications

- **Key Specifications**
- Flow Range 0.3 to 20 ft/s, 0 1 to 6 m/s
- Linearity. ±1% of full range
- Repeatability: ±0.5% of full range
- Supply Voltage 5 to 24 VDC
- Temperature/Pressure See chart on page 65
- Output Open collector, sinking
- Weited material
 Housing Polypropylene or PVDF
 Rotor PVDF
 Shaft Titanium (options available)
 O-Ring Viton

- Flow rates as low as 0.3 ft/s
- Corrosionresistant plastic
- Extended temperature range
- Companion fittings for various piping systems

SIGNET 8510/8511 Compak

Flow Transmitters

Description

The SIGNET 8510/8511 Compok
Flow Transmitters provide an isolated 4
to 20 mA signal from a range of Signet
flow sensors. Sealed NEMA 4X
electronics eliminate the need for
potentiometers or test equipment
External keys and display allow setup in
minutes. The 8510 can be spanned for
any flow range or engineering unit
Universal mounting hardware enables
installation in virtually any application

Specifications

Loop Power. 10 to 30 VDC

8510 twowire

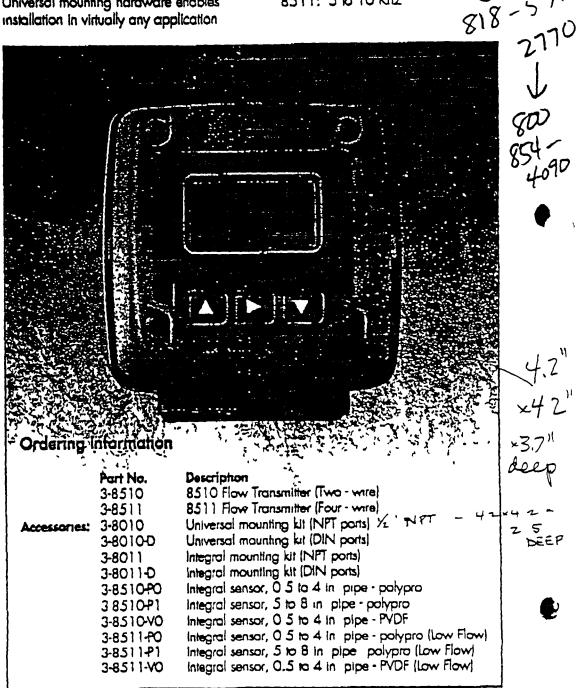
8511 four-wire 500 VDC loop 120 Y11 A

Isolation

Display Pages 001 to 0000

LIQUID CRYSTAL - FREEE

Display Range 0 01 to 9999
 Totalizers 0 to 99999999

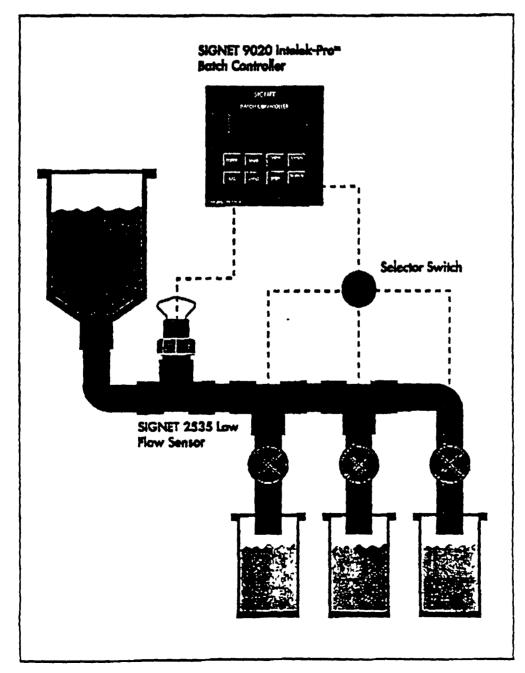

Loop Accuracy ±50 μA

Input Frequency Range.
8510 5 to 500 Hz
8511: 5 to 10 Khz

Sylectrossis

- Isolated adjustable 4 to 20 mA output
- Flow rate and totalizer display
- Universal installation for pipe or surface mounting
- Push-button calibration
- User-selectable range and units
- Frequency output for remote instruments

Bluck. This shill


2535 Gravity Feed Application

Using gravity to dispense liquid is a common practice in industry to save energy and pumping costs in gravity feed applications, flow velocities are low and continue to drop depending on the level of the dispensing tank.

The SIGNET 2535 Rotor-X Low Flow Sensor is an ideal solution for these applications since it can measure flow rates as low as 0.3 ft/s

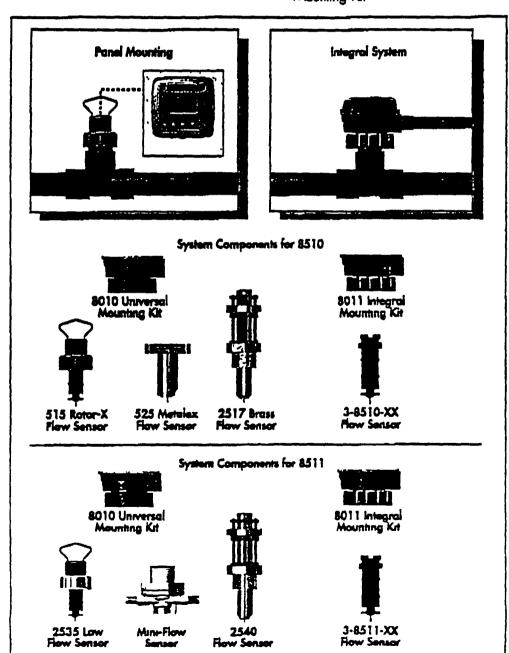
The following diagram illustrates the use of a gravity feed system in a textile plant

The 2535 is used with a SIGNET 9020 Intelek-Pro Batch Controller to complete a batching system. A selector switch is used to choose the appropriate tank that needs to be filled

SIGNET 8510/8511 Compak Flow Configuration

Standard Installation

- Choose from a range of Signer flow sensors
- Use the SIGNET 8510 Compak Flow Transmitter to mount directly on a panel (non-powered sensors)


Use the SIGNET 8511 Compak Flow Transmitter to mount directly on a panel (powered sensors)

Pipe or Surface Installation

 Add the SIGNET 8010 Universal Mounting Kit

integral System

- Use the SIGNET 8510 or 8511 Compak Flow Transmitter
- Select a SIGNET 3-8510-XX sensor for the 8510 Transmitter, or a 3-8511-XX sensor for the 8511 Transmitter
- Select the SIGNET 8011 Integral Mounting Kit

Flow Installation Guidelines

Figure 1: Flow sensors generally depend upon a "fully developed turbulent flow profile" for maximum linearity and accuracy. To achieve this, the sensor must be located in a straight run of pipe upstream and downstream of the sensor

Major obstructions such as pumps or throttled valves will require longer straight runs

Figure 2: In horizontal pipe runs with no air pockets or sediment present, mount the sensor/fitting in the 12 o'clock or 6 o'clock position if sediment or air pockets are present, tilt the sensor/fitting at a maximum angle of 45° to overcome these obstacles

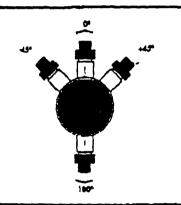
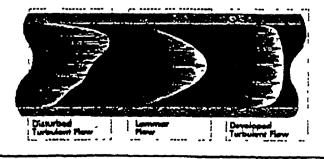
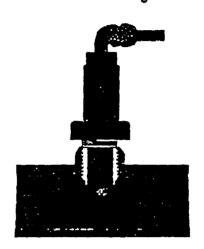



Figure 3: The most common flow profile found in industrial applications are fully developed turbulent flow (required for Signet sensors). The second type, disturbed turbulent flow, is less stable and occurs when the flow is interrupted by a valve, elbow, or other obstruction. To achieve a developed turbulent flow, refer to the steps in Figure 1. The third type,

laminar flow, occurs with highly viscous fluids, or fluids travelling at very low velocities. This flow condition is measured with a Reynolds number. Typically, flow conditions with a Reynolds number lower than 2,000 are considered laminar. For a developed turbulent flow acceptable for Signet sensors, this number should be above 4,500.


C

pH and Conductivity Sensor Installation Guidelines

Figure 1: For proper sampling and increased life, the sensor should be placed as far as possible from point of reagent addition, and close to the exit of the tank in submersible applications. Flow rate past the electrode should be less than 4 ft/s for bulb and 5 ft/s for flat surface configurations.

Signet's unique connection technology makes it easy to maintain a clean, dry contact between the probe and pre-amplifier. Contact surfaces should be protected from excessive exposure to dirt or spray during installation and maintenance. Signet pre-amplification

allows for pH signal transmission up to 400 ft. Keep electrode clean and well maintained for a longer life

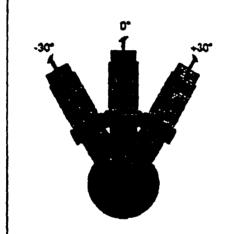
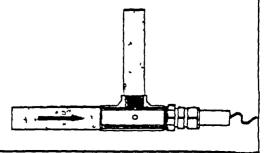



Figure 2: In order to maintain proper flow of electrolyte through the reference junction, and to prevent air from affecting the measuring element, pH electrodes should be mounted vertically ±30° Keep the electrode wet at all times. Storage is best in a KCL solution.

Figure 3: For a standard threaded sensor, mounting with flow into the sensor is recommended. A four o'clock installation position is ideal when the sensor is used with Signer fittings. The electrode should be mounted to prevent air entrapment in the sensor. In aerated tanks, a baffle may be needed. Coating of the electrodes will cause erroneous readings, so avoid oils

from coming in contact with the electrode. Conductivity signal transmission to 100 ft. is acceptable.

Min/Max GPM Values For SIGNET Insertion Sensors

The values provided in the chart below are for product comparison in schedule 40 metal pipe

The minimum/maximum gpm values will differ depending on pipe size, schedule and pipe material.

Pipe Size (in.)	2535 3-8511-XX	2550	2540	515 3-8510-XX	525
Min FPS Max FPS	0.3 20	0.3 20	0.3 20	1 20	1.6 20
0.5	0.3 , 19	:	:	1 19	16, 7
0.75	0.5 34	:	•	1 7 34	2 <i>7</i> 34
1	0 8 54	:	:	57 2.7 54	54 3 7 7
1 25	1 4 94	:	•	4 <i>7</i> 94	7.4 94
1.5	1 9 127	: ,	1 9 127	, 3 & A , 127	10 1-7 -
2	3 2 210	3 2 210	3 2 210	10 6 210	16 8 210
2.5	4 5 300	4.5	4.5 300	, 1 <i>5</i> , 300	24 300′
3	7 461	7 461	7 461	24 461	37 461
4	· 12 ` 794	12 794	12 794	794	63 (1) 794 - 254
5	19. 1247	19 1247	19 1247	63 1247	100 1247
6	27 1801	27 1801	27 1801	91 1801	144 1801
8	47 3119	47 3119	47 3119	156 3119	250 3119
10	74 4915	74 4915	74 4915	246 4915	393 4915
12	105 6977	105 6977	105 6977	349 6977	559 6977
14	127 8432	127 8432	127 8432	422 8432	-
16	166 11015	166 11015	166 11015	551 - 11015	
18	210 13942	210 13942	210 13942	698 13942	÷

Recommended Scale Ranges (in garlons per minute)

Recommended full scale calibration ranges for individual pipe size installations are shown in the chart below. Average flow rate should be approximately 50% of the scale.

Although systems the normally collisioned in golders, were intinue [GPM] antially any intimetric unit is available for use in a state of system of their at-

Pipe Size (In)	Std.	Opt	'Min.	Total
C 50	0-18	v 12	(18	X 1
0.75	0-30	218	012	X 1
1	0.50	7-30	0-18	x:
. 25	0-80	0.50	237	X 10
1 50	0-120	0-80	0-5-2	X 10
4	0-180	0-120	7-8U	X 10
2 50	0-300	0-180	0126	V 10
3	0-500	0300	0.80	x 10
4	0 800	0-500	Ø303	x 100
5	0-1200	0 800	C 5CU	X 100
6	0-1800	0-1200	0-800	x 100
8	0-3000	0-1800	0-120.	x 100
(0-5000	0.3000	0.1500	x 100
י:	0.8000	0-5000	03337	x ,000
1/	0-12000	0-6000	050(7)	x 1000
16	0-12000	0 8000	المكالما	X 1000
18	0.18000	0 12000	0-8(X-C	X 1000C

Sensor/Indicator Compatibility Matrix

	c)Xt	ad?	508 4235 2540 8511 XX	4502	145	246
* YC						
-						
7 .						
75						
•						
ç						
444						
42				· . · . ·		
^_		7:31				
••						3
6-1						
7 1						
·						

14. Design Calculations for Solar Panel and Battery

180

- - }

REMOTE

OWETING.

12301 North Grant Street. # 230 Denver, Colorado 80241-3130 Office (303) 452-9383 FAX (303) 452-9519

Solar Electric Power Systems

TO: John Jankousky The S.M. Stoller Corporation

FROM: John Phillips

RE: Solar Electric Generator for the Rocky Flats Project

DATE: August 24, 1995

FAX: 303-443-1408

My recommendation for the language in your document under "2.3 Power supply" is as follows:

Power supply shall be shared for the flow meter, the high level indicator, and the leak detection indicator. It shall consist of a solar electric generator Model Number ST60-2G27-24V, with voltage regulation, engineered and manufactured by Remote Power Inc. The solar electric generator is to be installed on a two-inch schedule 40 steel pipe (at least ten feet long, secured 30 inches into the ground with concrete). The solar electric generator's battery enclosure, the two Flowline LC06-1001 junction boxes, and the flow transmitter are to be connected with 1/2 inch rigid galvanized steel conduit through which the wiring connections are to be made. The electrical connection between the terminal strip in the solar electric generator, the two Flowline LC06-1001 junction boxes, and the flow transmitter are to be made with THEW 14 guage wire.

The quote for this system is as follows.

Generator model: ST60-2G27-24V, with voltage regulation Site location: Rocky Flats, near Denver, Colorado Power requirements: 24 volts nominal, for

- (a) flow transmitter operating at .120 miliamps, continuous
- (b) high level indicator operating at .250 miliamps for up to 23 hours in any one day, maximum two days
- (c) leak detection indicator operating at .250 miliamps for up to 23 hours in any one day, maximum one day a week

No sun operation: 11.5 days

Major components:

- (2) Solarex MSX-30 solar electric panels
- (2) sealed gal batteries, Group 27 size
 (1) 12 volt, 8 amp charge regulator, with temperature compensation (1) Enclosure for the batteries, insulated, with charge regulator installed and wired
- (1) Mounting hardware for the solar electric panel
- Miscellaneous wiring and mounting hardware
- Installation instructions

MOTS: this quote does not include the pole, site work, or installation

PRICE; \$1,972.17 POB our dock

John Jankousky
The S.M. Stoller Corporation
page 2

All generators we manufacture for commercial uses contain only the highest quality, field proven components specifically matched to maximize return on capital investment. In addition to the warranties provided by the manufacturers of individual components, Remote Power warranties its generators to perform as specified for one full year (a complete weather cycle).

If there is anything else we can do for you, let me know. Either I or our engineers can enswer any questions either you or your customer may have.

SOLAR ELECTRIC GENERATOR SYSTEM SIZING AND PERPORMANCE REPORT

2800-284-6978 to Remote Power Inc. 12301 N. Grant St. #230, Denver CO 80241

Solar Electric Generator for The S.M. Stoller Corporation Rocky Flats Project

System Design - August 24, 1995

Load	Description	Load Profile	Amperes Hours/day	Weekly Profile Days of Week On
1	flow transmitte	24 hours	0.150 24.00	1 2 3 4 5 6 7
2	high strobe	24 hours	0.313 23.00	1 4
3	leak strobe	24 hours	0.313 23.00	1

Nominal PV System Voltage: 24 Array mounting - Fixed tilt Array Power system type: DC System with battery , NO maximum power tracker

Solar data and temperature location: DENVER, COLORADO, U.S.A. Latitude= N 39:45 Longitude= W104:48 Elevation= 1625 (M) Azimuth = 0Albedo = 20%

- - - - - - PV ARRAY DESCRIPTION (ratings at 254C) - - - -Modules: Solarex, MSX-30 Total Modules = 2 Series = 2 Parallel = 1 Power = 60 Peak Watts Hax. power voltage= 34.2 Max. power current = 1.8 Open circuit voltage= 42.2 Short circuit current = 1.9 Mismatch loss(%)= 3 Dirt loss(%)= 5 Wiring loss(%)= 2

BATTERY SUBSYSTEM (ratings at 25½C) ----tery: MK BATTERY, 27 GEL Amp-hr/ea = 98 Volts/ea = 12 Series = 2 Parallel = 1 Total = 2 Max. month daily DOD = 12.52% Total Amp-hrs. = 98 Battery Charge Efficiency = 95% Weight = 57 Kg Equivalent to 11.73 days at highest monthly load to 80% DOD

- - - - ESTIMATED PERFORMANCE - - - -

	Global		QTilt	Mean	Gross	Array Net	Load D	eficit	Arra	ay/Load
Yonth	kWh/M»	Tilt	kWh/M»	5P	A-hr/d		A-hr/day		SOC	Ratio
Jan	2.63	60	5.38	28.9	9.42	9.06	6.69		87-100	1.36
Feb	3.41	60	5.38	30.9	9.42		6.69		87-100	1.35
Yar	5.07	60	6.67	38.5	11.68		6.69		88-100	1.69
Apr	6.02	60	6.03	48.7	10.55	10.17	6.69		88-100	1.52
Yay	6.96	60	5.66	57.2	9.91	9.51	6.69		88-100	1.42
Jun	7.39	60	5.41	64.8	9.46	9.06	6.69		88-100	1.36
Jul	7.33	60	5.58	72.9	9.77	9.34	6.69		88-100	1.40
Aug	6.35	60	5.77	70.2	10.10	9.67	6.69		88-100	1.45
3ep	5.60	60	6.54	62.2	11.45	11.04	6.69		88-100	1.65
Ct	4.22	60	6.45	49.1	11.29	10.92	6.69		88-100	1.63
VOV	2.78	60	5.10	38.3	8.93	8.59	6.69		87-100	1.28
)ec	2.35	60	5.08	30.7	8.90	8.55	6.69		87-100	1.28

Lowest array to load Amp-hr/day ratio is 1.28

(Artay Gross: 25½C, no losses. Array Net: All losses and temperature effects.) .1 as: STOLLER.558 Calculated by PVCAD

15. Wind Loadings and Structural Calculations for 65-Gallon Drum Holder and Solar Panel CONSULTING ENGINEERS DESIGN ____ DATE ____ JOB NO. ____

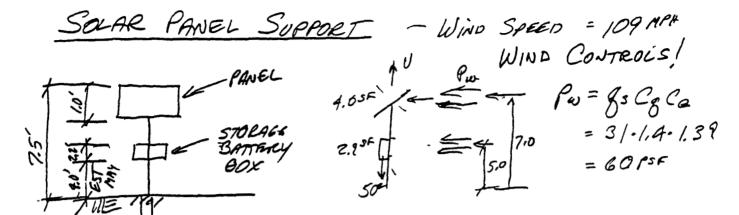
SEEP TREATMENT @ ROCKY FLATS

STRUCTURAL ELEMENTS

DESIGN CALCULATIONS

by

John H. Allen P.E.


9/18/95

DESIGN DATA: LOADS: DESIGN WIND: 109 MPH SEISMIC-ZONEI, CAT. III

CODE. UBC '91

MATERIALS: STEEL A-36 CONCRETE: £'=3000psi C 28 days CONSULTING ENGINEERS DESIGN THE DATE 9/14/95 CHECK DATE JOB NO. 5/5

Check Pole Size $M = 7.0 \times 4 \times 60 + 5.0 \times 2.9 \times 60 + .5' \times 50^{\circ}$ $= 1740^{14} + 900^{14} + 25^{14} = 2665^{\circ}$ Try 2'4 Schedule 40 (STD War) $M = .326 \times 21^{45} = 571^{14}$ $M = .326 \times 21^{45} = 571^{14}$

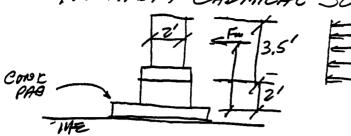
Check FOOTING SIZE: USE NOMINAL SOIL BEARING = 40,0psf $V = 4.0 \times 1.8 \times 60 = 430 \pm 4$ $V = 2V = (.78 \times 1.45 + 100 \times 3.14) d$ $V = 2V = (.78 \times 1.45 + 100 \times 3.14) d$ $V = 2V = (.78 \times 1.45 + 100 \times 3.14) d$ $V = 2V = (.78 \times 1.45 + 100 \times 3.14) d$ $V = 2V = (.78 \times 1.45 + 100 \times 3.14) d$ $V = 2V = (.78 \times 1.45 + 100 \times 3.14) d$ $V = 2V = (.78 \times 1.45 + 100 \times 3.14) d$ $V = 2V = (.78 \times 1.45 + 100 \times 3.14) d$ $V = 2V = (.78 \times 1.45 + 100 \times 3.14) d$ $V = 2V = (.78 \times 1.45 + 100 \times 3.14) d$ $V = 2V = (.78 \times 1.45 + 100 \times 3.14) d$ $V = 2V = (.78 \times 1.45 + 100 \times 3.14) d$ $V = 2V = (.78 \times 1.45 + 100 \times 3.14) d$ $V = 2V = (.78 \times 1.45 + 100 \times 3.14) d$ $V = 2V = (.78 \times 1.45 + 100 \times 3.14) d$

250 psf

try z.5' $= (400-170) \times 9/2 = 290,$ $+ 23d M = 290 \times \frac{2}{3} \times 2.5$ = 480 % N' $+ bd = \frac{420}{25} = 170$

186

LEN SUBJECT CONTAINMENT BJECT WINTHINGENT SHEET NO. 2 OF A SIGN THE DATE JOB NO. 515 try 15x4' pier $M_{R}^{2} = (400 - \frac{420}{5}) \times \frac{d^{2}}{3} = (389) \times \frac{92}{3} = 1760$ CAN ALLOW GREATER BEARING @ DEEPER DEPTHS ASSOME PRESSURE DISTRIB AS SHOWN


FHR = 3×800×3' = 1600 # MR = 2.5' (1600 - 420) = 2950 1# 72665 OK Check bottom pressure FRE = 3×1800×1'=1200# = 1600#-420=1180# OF Note - these pressures are for 1'& pien USE: 1'AX 4-0" PIER

MAX CLAMP FORCE - 250# < 800# MFGR RATING

SULTING ENGINEERS DESIGN JHA DATE 9/15/8 CHECK ____ DATE __

___ JOB NO. <u>5/5</u>

TREATMENT CHEMICAL SUPPORT

Pw = GOpsf (neglect reduction for circular shp.

Fw= 60x2x3,5= 420# M = 420×3.75'=1575#

FIND CONCRETE PAP SIZE - FULL CONTACT
UN CEINFUNCES

(TANK EMPTY)

8" THICK PAP (100,5P)

$$B = \% \qquad W = 100 B^2$$

$$C = M$$

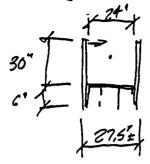
Combining
$$6B = \frac{M}{100B^{2}}$$

$$B^{3} = \frac{M}{600} = \frac{1575}{600} = 2.65^{\circ}$$

$$B = 1.39^{\circ}$$

USE: 4' #

SIZE SUPPORT LEGS -Assume 3 @ 304 circle est thuk & contents ~ 600#


$$C=2T = \frac{1575 \times 12^{"}}{22.5"} + \frac{600^{\#}}{3}$$

= 840+200=1040±

for Single L's MAX b/ < 10.8 try 2x2x/4 (1/6=8) (= 391 Ke = 1.2x24 74 fa = 1040 = 1100 = Cc = 126

Ref = .59 - Fa = 444 Fg

FOUR LEG SUPPORT

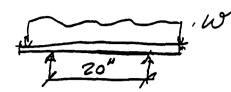
Check wind on EMPTY BARREL

CARRY FULL LOAD ON EACH LEE EQUALLY

$$F_R = \frac{4z_{0x}z_{1}}{z_{7}} = 327$$
 $M = F_{0x}z_{7} = 8808^{4}$

$$M_{IR} \phi = Ab = \frac{210}{.85 \times 22000} = .01 m^{2}$$

LUET ANY SIZE


USE 3/04

$$M = \frac{Pr^{2}(3+\nu)}{16} = \frac{1.5 \times 25(33)}{16}$$

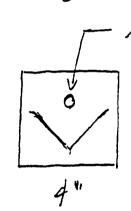
$$= 194'' \pm \frac{1}{16}$$

$$t = \sqrt{\frac{6M}{22ky}} = .22'' USE/4''$$

BOTTOM REDGE & SUPPORT

SUPPORT

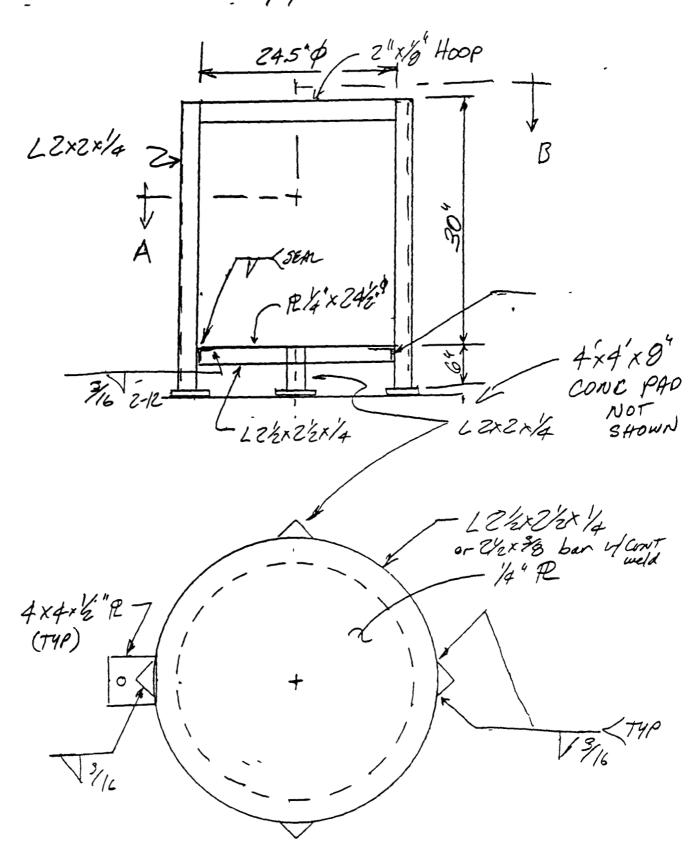
$$W = \frac{W}{C} = \frac{600^{\#}}{17 \times 24^{\#}} = 8.0^{\#}$$

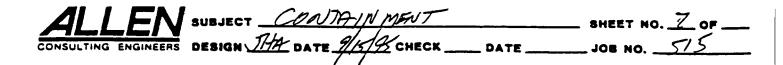

asc $M = \frac{1}{8}Wl^2 = \frac{8\times20^2}{8} = 400^{\#}$

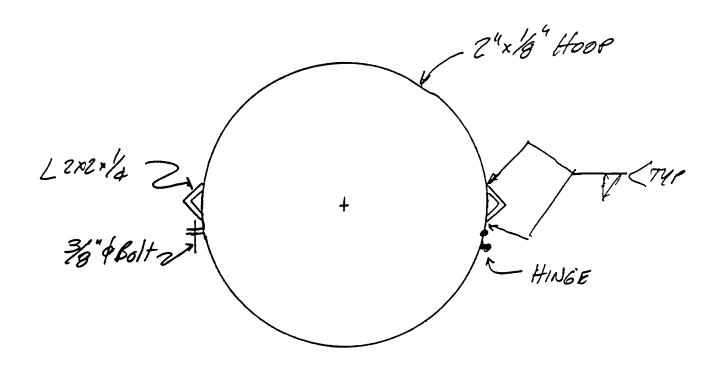
$$S = \frac{400 \times 12}{22000} = .22 \text{ in}^{3} = \frac{6h^{2}}{6}$$

$$\text{for } b = \frac{1}{4}\text{ in } h = \sqrt{\frac{6 \times .22}{.25}} = 2.3\text{ in }$$

$$USE L 2/2 \times 2/2 \times 1/4$$

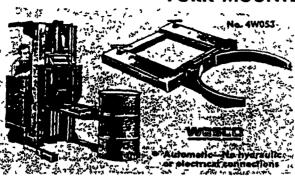

Base: USE 30x4x4


SET S/2" IN CONCRETE


CAPACITY: 1700 TELS

1 4" >> 1124" OK

- SECTION A



SECTION B

16. Product Specification Sheets for Vertical Drum Lifter and Drum Dollies

FORK MOUNTED DRUM GRABS

Enable forklift operator to singlehandedly lift transport and deposit closed head steel drums. Drum grabs may be utilized for open head steel drums which are not out of round or damaged. or that contain materials that can spill Driver simply approach weight of drum holds grab jaws preventing slippage Mounts easily on forks of forklift. All welded construction Jaws are formed from steel bar Safety orange enamel finish Wesco Mfg.

30/55-Gallon Drum Grabs adjust easily without tools to handle 30 or 55-gallon steel open or closed head drums. 1500 lb capacity units are secured to forks with hand tightened lock screws mounted on each fork pocket. Fork pockets 22 center to center Two drum model to be used only with two same size drums

Standard 55-Gallon Drum Grabs. 1500 lb capacity per drum Choose from single or double drum models. Both are secured to forks with hand-tightened lock screws mounted to each fork pocket. Fork pockets 22' center to center

Drem Grab		Drem Cope	Desity	Fork Pocket	Weste	Stock			Shpg
Type	No	Calles	Diameter	Size	Medel	No	List	Each	Wt
Standard	1	55	2214	51/4 x 2"	DJ-55	4W053	\$422,40	\$308 00	126 0
Standard	2	55	221/2	7 x 244	DJ-255	4W466	564.70	461 00	230 0
Adjustable	1	30/55	18/2214	54 x 2	ADJ-53	4W467	484.90	397 00	135 0
Adjustable	2	30/55	18/221/2	7 x 21/4	ADJ 253	4W468	589 10	481 50	215 0

TED PENSER

Faci

rt. ander closed head dr

No. 3W390

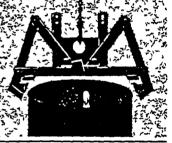
drum lifter/dispen operator to remotely and closed head dollar and tightening screen bs half-full Minimum 2014H x 38W x 321/201

Dispenser Shpg 563724

RRIER 3

e operator to perform sport, tilt rotate, and erator secures saddi-then can roll loads or use with 55-gailing 1966 is available see ith 800 lb full or 500lb ed for safe operation, osition tilt lock holds arrier rolls on two's olefin swivel caster ical and 18 horizontal on. Shipped partially c Wesco Mig. brand

pg wt 105 0 lbs.113



VERTICAL DRUM LIFTER 🗡

Automatic drum lifter picks up vertical standing 55-gallon closed steel drums and sets them down without operator at pickup or delivery point. Lifter works with operator's overhead hoist or crane. Lift hook from crane engages lifter; grabs and holds drum securely until drum is set down in place. Lifter can be maneuvered over stacked drums and around obstacles to a selected drum, grab it, pick it up and carry it to another location with the operator safely out of the way Simple grab hook mechanism. Grip pads help align on drum chime for secure operation. Comes fully assembled 1844 x 33W x 8D Orange enamel finish Wesco Mfg. brand (DL-1).

No. 3W391 Shpg. wt. 52.0 lbs. List \$186 80 Each

- Handles 35 gallon weighing apple 1000 lbs
- Willia with avent holitor come

ECONOMY DRUM LIFTER

- For 55-gallon closed head steel 🔒 🟋 drums
- 1 700 lb lifting capacity

Vertical drum lifter is safe and simple to use on 55 gallon closed head steel drums. Attach hook of any overhead crane or hoist any overhead crane or hoist through 1½" diameter lifting eye mounted on top of four 1½ x 1" hot rolled steel supports Safety lock pin prevents_accidental opening while transporting drums up to 100 lbs Overall dimensions 13/4H x 23W x 281/4*D Wesco Mfg. wand (EDL-5)

lo 5W683 Economy Drum Lifter Shpg. wt. 15 0 lbs List \$125 70 Each

- No.: (P893-

wesco SALVAGE DRUM LIFTER

Easy to use overhead drum lifter picks up vertical standing 55 and 85-gailon open and closed steel drums. All steel lifter has one moving part and easily grabs drum just below chime Special design enables lifter to place a damaged 55-gallon steel drum into tight clearance 85-gallon steel or poly salvage/overpack drum 1000 lb capacity Shipped unassembled Orange enamel fin ish Wesco Mfg. brand (SDL-85)

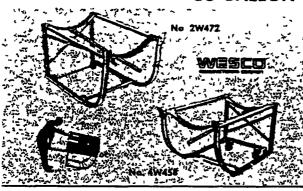
No 6W782 Salvage Drum Lifter Shpg wt. 210 lbs List \$128 00 Shpg Each

ROTARY DRUM PUMPS

Hand operated drum pumps for dispensing and transfer pumping fuel oil lubricating oil gaso-line anti-freeze No 1P893 delivers up to 10 gal lons of fluid per 100 revolutions. Includes 22 to 40° telescoping suction pipe and 2" bung adapter Pump body has 1" inlet and 3/4" outlet. No 2P093 delivers 10 GPM at 135 RPM 1" NPT inlet and 3/4" NPT discharge port. Bung adapter included Requires 1° NPT pipe suction tube. For complete listings see pages 2498 and 2499 respectively

DRUM SAFETY STORAGE CABINET

No 3W372 manual closing 2-door cabinet for 55-gallon vertical drum storage of flammable liquids Eagle brand For or dering information see page 1901

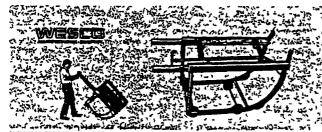

SEE WARRANTY INFORMATION ON PAGE OPPOSITE INSIDE BACK COVER

1675

Crainger No 386, 1995

#3.2°

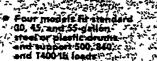
55-GALLON DRUM CRADLES ~


For manually handling 55-gallon steel drums Simplifies stor age loading and unloading and on the job dispensing operations. Four easy steps enable one operator to handle full loaded drums (1) Position cradle next to drum (2) Hook tipping lever on drum chime (3) Tip load on the curved rails (4) More loaded cradle on its wheels to new location. Cradle frame is be channeled steel cross-braced for rigidity Nonsparking, oil and chemical resistant wheels standard on both models Locapacity 600 lbs, drain height 15" 32½L x 19½"W Orange cold Shipped unassembled. Wesco Mfg. Brand.

No. 2W472 has four 21/2" rigid polyolefin wheels mounted inside

No 4W458 has two 2½° rigid polyolefin wheels and two polyolefin swivel casters for easy steering.

Whoels	Casters	Weses Mfg Model	Stock No	Liet	4 Eoch	Lets 3	Shp
4 2	- 2	CW-10 ^ CWS 10	2W472 4W458	\$98 70 132.00	\$80 70 98 50	\$76 67 95 58	30 37


30 AND 55-GALLON INDUSTRIAL DRUM CRADLE

Drum cradie enables one operator to tip, move rotate drain, and store industrial steel and fiber drums weighing up to 1000 lbs Handles either 30 or 55-gallon metal industrial drums with lbs Handles either 30 or 55-gailon metal industrial drums with ease Two hardwood retractable handles extend from 42 to 643 giving operator leverage and safety when tipping drum down for draining. Horizontal position is 20° above floor surface Polyologin rollers enable drum to be rotated for positioning. Drum hoof and beveled toes are made of long wearing carbon steel Cradle moves on four 4°, polyolefin wheels that resist reaction with fats oil and chemicals. Unit comes partially assembled Top section has welded steel construction that bolts to the uprights 25½HB. 19 W Orange Wesco Mfg brand (CW-20)

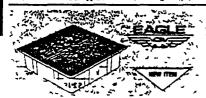
No. 3W399 Shpg. wt. 54.0 ibs-List \$185.00 Each

DRUM DOLLIES

No. 5W562

CALL 1-600-323-0629

Add mobility to heavy industrial drums and enable reusable drums to serve as convenient containers for scrap metal, liquids, parts, and refuse


No 5W562 is of structural foam which will not rust or bend has a solid bottom, and comes with five heavy-duty casters. No 2W269, 3W039 and 3W040 have a circular frame of welded steet. with cross-bracing on the bottom and four heavy duty due leve ball bearing swivel casters. Rubbermaid and Wagner brands

- - SPECIFICATIONS

Delly	Belly Su			Caster		
Copacity	Dia	in Dia	Ht	Size	Тура	
500 lbs	2436"	231/4	744*	3 x 11/4"	Rubber/Steel Pla	
840	20%	194	61/4	3 x 1 1/4	Molded Plastic	
840	2314	23 4	644	3 x 144	Molded Plastic	
400	231/2	23 1/2	61/4	3 x 13.	Phenolic Resin	

Delly Capacity	For Drum Size	Mfr s Medel	Stock	List	Esca	Lets 3	Sheg. Wi
500 ibs 840 840	Up to 55 gal. 30 45 55	2650 48661 40001	5W562 2W269 3W639	\$78.02 51.19 57.05	\$66 30 46 10 51 40	\$62 99 42 11 46 92	17 0 · 14.0 19 0
1400	45 55	4001†	3W840	92.17	83 05	75 #1	20 0

() Rubbermaid brand. (1) Wagner brand

DRIP PAN

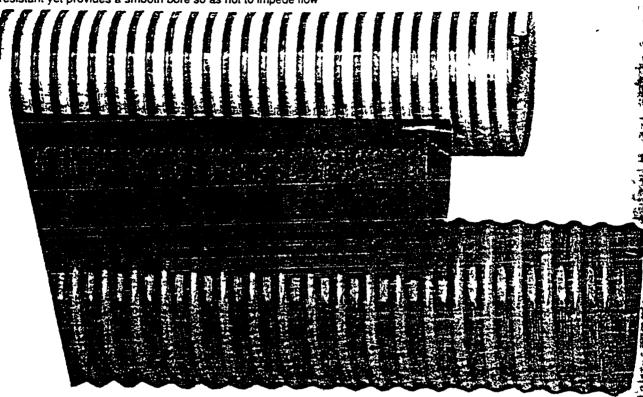
Absorbs problem leaks and helps keep work area floors clean and safe Holds up to one galion of liquid Pan is filled with polypropylene sorbent for oils water based and other non aggressive liquids Rigid sturdy construction helps prevent spillage during handling, 101/2 square 3 deep Packed 12 drip pans per box Eagle brand (1670)

No 5U734 Shpg wt 10 0 lbs. List \$70 00 Each Box \$52.50 Lots 4 \$49 88

Hand operated products and

No 6WO Electricimenter

WHOLESALE PRICES-GRAINGER


Granique N- 386, 1995

1672

17. Product Specification Sheets for Flexible PVC Hose, Quick Disconnect Couplings, and Hose Clamps

KANAFLEX PVC SUCTION & DISCHARGE HOSE

Kanaflex is recognized as an industry leader in corrosion resistant hose products. This suction and discharge hose is ideal in chemical, salt water, sludge and in the (200 senes) food grade applications. It is patented PVC helical coils make it crush resistant yet provides a smooth bore so as not to impede flow.

SERIES 100CL

SERIES 110CL & 110GR

SERIES 110 HEAVY DUTY (GREEN OR CLEAR) SUCTION & DISCHARGE HOSE

PART NUMBER	ם ו (או)	Q Q (NI)	MIN BENDING RADIUS 72°F (IN)	WORKING PRESSURE 72°F P S I	BURSTING PRESSURE 72°F P S I	VACUUM RATING 72°F INJHg	UNIT LENGTH (FT)	PERFORM (\$)
110PV-007KF	3/4*	0 95	19	86	284	29 8	100	80
110PV-010KF-	1	1 23	19	86	284	29 8	100	1 07
110PV-012KF	1-1/4	1 52	27	79	256	29 8	100	1.37
110PV-015KF	1 1/2	1 78	28	72	242	29 8	100	1 55
110PV-020KF	2	2 38	39	72	242	29 8	100	2.27
110PV-025KF	2 1/2	2 92	47	72	242	29 8	100	3 53
110PV-030KF	3	3 41	61	62	199	29 8	100	4.26
110PV-040KF	4	4 50	91 !	55	178	29 8	100	7 10
110PV-050KF	5	5 55	14 0	33	120	28 0	50	10.27
110PV-060KF	6	6 67	15 0	33	120	28 0	50 ~	13 40
110PV-080KF	8	8 83	20 0	28	105	28 0	25	23 02

SERIES 100 STANDARD DUTY (GREEN OR CLEAR) SUCTION & DISCHARGE HOSE

100PV-010KF	1	1 22	12	50	155	29 8	100	1 05
100PV 012KF	1 1/4	1 48	16	45	149	29 8	- 100	1,21
100PV-015KF	1 1/2	1 84	20	45	149	29 8	100	1 45
100PV-020KF	2	2 36	26	40	132	29 8	100-	2.00
100PV-025KF	2 1/2	2 87	26	35	115	29 8	1003	2.99
100PV-030KF	3	3 50	28	3 5	115	29 8	100 1	4 10
100PV-040KF	4	4 63	43	30	100	29 8	100 -	6 54
100PV-060KF	62	6 73	9.2	30	100	28 0	50 - 👊	13 10
100PV-080KF	8²	9 04	143	30	100	28 0	25	22.63
100PV 100KF	10 7	11 26.	30 0	30	80	28 0	20	48 09

NOTE Specify Clear or Green

HARRINGTON

¹ Special order 100 minimum order 2 Available in clear only (green available by quotation)

QUICK DISCONNECT CAM OPERATING COUPLINGS

BLACK GLASS FILLED POLYPROPYLENE WITH EPT GASKETS STANDARD

These corrosion resistant fittings are designed for use in rugged applications where a piping system and hose or tubing may be connected and disconnected often. They are manufactured of glass filled polypropylene, and glass filled nylon is available on request. Our couplers mate with any other coupler, metal or plastic, manufactured to MIL-C-27487 dimensions. This specification has become the basic standard for carn type couplers.

TEMPERATURE RANGE Normal Conditions.

From 10°F to 180°F

WORKING PRESSURES

1/4" thru 1" sizes - 125 PSI 1-1/4" thru 2" sizes - 100 PSI

3° size - 75 PSI

4° size - 50 PSI

PART A MALE COUPLER x FPT

SIZE (IN)	PART NUMBER	PRICE EACH (\$)
1/2	APP-005FL	2.20
3/4	APP-007FL	2.20
1	APP-010FL	2.70
1-1/4	APP-012FL	4 00
1-1/2	APP-015FL	4 00
2	APP-020FL	5 80
3	APP-030FL	7 00

FEMALE COUPLER x MPT

	SIZE (IN)	PART NUMBER	PRICE EACH (\$)
	1/2	BPP-005FL	6 00
	3/4	BPP-007FL	6 00
	1	BPP-010FL	6 20
	1-1/4	BPP-012FL	10 30
	1-1/2	BPP-015FL	10.30
ļ	2	BPP-020FL	11 40
	3	BPP-030FL	20 40

PART C FEMALE COUPLER x HOSE

SIZE (IN)	PART NUMBER	PRICE EACH (\$)
1/2	CPP-005LF	6 50
3/4	CPP-007FL	6 50
1	CPP-010FL	7 00
1-1/4	CPP-012FL	11 10
1-1/2	CPP-015FL	11 00
2	CPP-020FL	11 60
3	CPP-030FL	18 80

FEMALE COUPLER x FPT

SIZE (IN)	PART NUMBER	PRICE EACH (\$)
1/2	DPP-005FL	6 50
3/4	DPP-007FL	6 50
1	DPP-010FL	7 00
1-1/4	DPP-012FL	11 40
1-1/2	DPP-015FL	11 30
2	DPP-020FL	12.00
3	DPP-030FL	20 00

PART E
MALE COUPLER x HOSE

SIZE (IN)	PART NUMBER	PRICE EACH (\$)
1/2	EPP 005FL	2 80
3/4	EPP-007FL	2.80
1	EPP 010FL	3 30
1-1/4	EPP-012FL	4 20
1-1/2	EPP 015FL	4 10
2	EPP 020FL	4 30
3	EPP 030FL	9 00

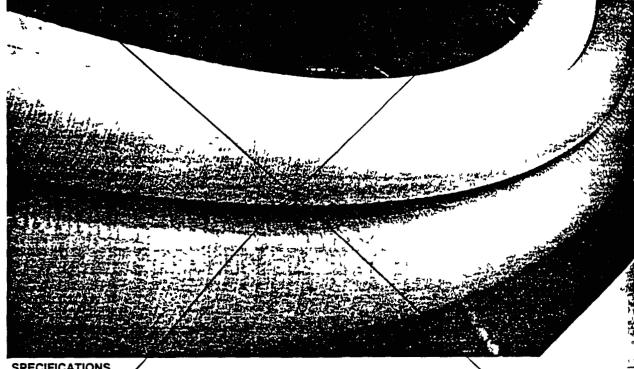
PART F
MALE COUPLER x MPT

	7	
SIZE (IN)	PART NUMBER	PRICE EACH (\$)
1/2	FPP-005FL	2 80
3/4	FPP-007FL	2 80
1	FPP-010FL	3 40
1-1/4	FPP-012FL	4 20
1-1/2	FPP-015FL	4 10
2	FPP-020FL	4 30
3	FPP-030FL	11 00
4	FPP-040FL	28 00

PART DC FEMALE CAP

SIZE (IN)	PART NUMBER	PRICE EACH (\$)
3/4	DCPP-007FL	6 00
1	DCPP-010FL	6.30
1-1/2	DCPP-015FL	10 60
2	DCPP-020FL	11 00
3	DCPP-030FL	18 00
4	DCPP-040FL	32.00

PART DP
MALE PLUG PART DP


SIZE (IN)	PART NUMBER	PRICE EACH (\$)
3/4	DPPP 007FL	2 40
1	OPPP 010FL	2,50
1-1/2	DPPP-015FL	3 20
2	DPPP-020FL	3 50
3	DPPP-030FL	8 30
4	DPPP-040FL	20 00

HARRINGTON

KANAFLEX POOL & SPA PVC HOSE **PVC SOLVENT WELDED FLEXIBLE PIPE**

Nèed a flexible connection between two PVC pipe connections? Here's your answer! This heavy duty tan suction hose is IPS size to selvent weld into standard PVC pipe fittings!

IAPMO Listed SP1071, SBCCI, Southern California Building Code, City of Los Angeles, Metro Dade County

SF	èΕ	CI	FI	C	A٦	TI(10	٧S

SIZE (IN)	O D	WALL THICKNESS (IN)	MIN BENDING RADIUS 72°F (IN)	WORKING PRESSURE 72°F P S I	BURSTING PRESSURE 72°F P S I	BURSTING PRESSURE 140°F P S I	COIL LENGTH (FT)	PART NUMBER	
1/2	8 84	0 12	2	100	335	180	100	1/2-SPA	.82
3/4	1 050	0 13	2	100	355	180	100	3/4-SPA	1 13
1/	1 315	0 14	2	100	355	220	50 OR 100	1-SPA	1 19
1-//4	1 660	0 14	4	80	285	156	100	1-1/4-SPA	1.38
1-1/2	1 900	0 15	4	70	270	128	50 OR 100	1-1/2-9PA	1.55
. 2	2 375	0 16	5	64	230	100	50 OR 100	2-SPA	2.26

POWER LOCK CLAMPS

The Kanaflex "Power Lock" clamps are designed to accompany Kanaflex Hose Series 100, 155, and 180

POWER LOCK CLAMP

			PRICE
	SIZE	PART	EACH
	(IN)	NUMBER	(\$)
>	2	PLCP-020KF	9 93
	2 1/2	PLCP-025KF	10 33
	3	PLCP-030KF	10 73
	4	PLCP-040KF	12.75
	5	PLCP-050KF	16 38
	6	PLCP-060KF	18 25
	8	PLCP-080KF	28 18
	10	PLCP-010KF	53 13
	12	PLCP-120KF	70.30

HARRINGTON

18. Product Specification Sheets Hydrogen Peroxide and Purge Meter

200

MATERIAL SAFETY DATA SHEET

ProTreat Technology Corporation 14818 West 6th Avenue, Suite 12A Golden, Colorado 80401

WT-961

(303) 279-1984

Date Prepared: February 1, 1994

SECTION 1 - PRODUCT IDENTIFICATION

TRADE NAME:

WT-961

Generic Name:

Waterflood/Disposal Compound

DOT Proper Shipping Name:

Cleaning Compound NOS Class 55

UN/NA Number:

None None

DOT Hazard Class:

NFPA 704M Rating: 1 Health 2 Flammability 0 Reactivity 0 Other

Q=Insignificant 1=Slight 2=Moderate 3=High 4=Extreme

SECTION 2 - HAZARDOUS INGREDIENTS

The composition of this mixture may be proprietary information. In the event of a medical emergency, compositional information will be provided to a physician or nurse. This product is hazardous as defined in 29 CFR1910.1200, based on the following compositional information.

INGREDIENT(S)	CAS #	OSHA HAZARD
Diethylene glycol	111-46-6	OSHA PEL;
_		ACGIH TLV
Methanol	67-56-1	Flammable
Isopropyl Alcohol	67-63-0	Inhalation irritant,
• •-		flammable
Ethyl Alcohol	64-17-5	Inhalation irritant,
		flammable

SECTION 3 - PHYSICAL AND CHEMICAL PROPERTIES

Boiling Point:

greater than 200° F

Specific Gravity:

.99 NA

Vapor Density:

appreciable

Percent Volatiles by Volume:

Appearance and Odor:

Amber Liquid; slight alcohol

odor -40° F

Freezing Point:

NA

Vapor Pressure at 200 C: Solubility in Water:

soluble

Evaporation Rate:

NA

Stability:

Stable

Incompatibility:

Strong oxidizing agents

1

Hazardous Polymerization:

Will not occur

Conditions to Avoid:

Avoid heat, sparks and open flames. Avoid contact with

strong oxidizing agents.

Hazardous Combustion or Decomposition Products:

Carbon monoxide, ammonía, carbon dioxide, nitrogen oxides, and unidentified organic compounds may be formed during combustion.

NOTE: These physical properties are typical values for this product.

SECTION 4 - HEALTH EFFECTS INFORMATION

EYE CONTACT:

Can cause severe irritation.

SKIN CONTACT:

Repeated or prolonged contact causes drying, brittleness, cracking and irritation. Prolonged and repeated skin contact with methanol-soaked material has produced toxic effects including vision effects and death. Low toxicity to animals by skin contact (minimum lethal dose, monkeys: 1.6 g/kg).

INHALATION:

High vapor/aerosol concentrations (greater than approximately 1000 ppm) are irritating to the eyes and the respiratory tract, may cause headaches, dizziness, anesthesia, drowsiness, nausea, unconsciousness, and other central nervous system effects. May cause narcosis.

INGESTION:

Toxic. Causes headache, weakness, confusion, loss of coordination, dizziness, difficulty walking, nausea, vomiting, decreased blood pressure, increased heart rate, pulmonary edema, kidney failure, unconsciousness, convulsions, and coma. Symptoms may be delayed. Severe poisoning may cause death. SYMPTOMS OF EXPOSURE:

ACUTE: Exposure to 4,000 - 13,000 ppm of methanol was fatal to humans.

CHRONIC: Exposure of 1,200 - 8,000 ppm of methanol for four years caused chronic poisoning and dimming of vision.

MEDICAL CONDITIONS AGGRAVATED BY EXPOSURE:

Repeated overexposure may aggravate existing kidney disease. Repeated overexposure may aggravate or enhance existing nervous system dysfunction produced by disorders known to cause nervous system effects of damage such as diabetes, alcohol or drug abuse, and Parkinson's disease.

Because of its defatting properties, prolonged and repeated skin contact may aggravate an existing dermatitis (skin condition).

SECTION 5 - FIRST AID INFORMATION

EYE CONTACT:

Immediately flush with water for at least 15 minutes while holding eyelids open. Call a physician at once.

SKIN CONTACT:

Flush with large amounts of water; use soap if available. Remove grossly contaminated clothing, including shoes, and launder before reuse. If irritation occurs, get medical attention.

INHALATION:

Using proper respiratory protection, immediately remove the affected victim from exposure. Administer artificial respiration if breathing is stopped. Keep at rest. Call for prompt medical attention.

INCESTION:

If patient is conscious and can swallow, give two glasses of water (16 oz.). Induce vomiting as directed by medical personnel. Never give anything by mouth to an unconscious or convulsing person.

NOTE TO PHYSICIAN: No specific antidote is known. Based on the individual reactions of the patient, the physician's judgment should be used to control symptoms and clinical condition.

NOTE TO PHYSICIAN: Probable mucosal damage may contraindicate the use of gastric lavage. Measures against circulatory shock, respiratory depression and convulsions may be needed.

SECTION 6 - OCCUPATIONAL EXPOSURE LIMITS

Disthylene glycol = TWA 50 ppm (total), 10 mg/m³ (aerosol) AIHA/WEEL

Methanol = TWA 200 ppm, STEL 250 ppm (skin) ACGIH/TLV 260 mg/m3, 310 mg/m3 ACGIH/TLV

Isopropanol = TWA 400 ppm, STEL 500 ppm ACGIH/TLV 985 mg/m 1230 mg/m ACGIH/TLV

Ethyl Alcohol - TWA 1000 ppm ACGIH/TLV 1000 ppm OSHA PEL

SECTION 7 - PERSONAL PROTECTION EQUIPMENT

RESPIRATORY PROTECTION: Airborne concentrations should be kept to lowest levels possible. If vapor, mist or dust is generated, use respirator approved by MSHA or NIOSH as appropriate. Supplied air respiratory protection should be used for cleaning large spills or upon entry into tanks, vessels, or other confined spaces.

VENTILATION: General ventilation is recommended. Additionally, local exhaust ventilation is recommended where vapors, mists or

aerosols may be released.

PROTECTIVE EQUIPMENT: Use impermeable gloves and chemical splash goggles when attaching feeing equipment, doing maintenance or handling product. Examples of impermeable gloves available on the market are neoprene, nitrile, PVC, natural rubber, viton and butyl (compatibility studies have not been performed).

Skin Protection: Workers should wash exposed skin several times daily with soap and water. Soiled work clothing should be

laundered or dry-cleaned.

SECTION 8 - FIRE AND EXPLOSION INFORMATION

FLASHPOINT: 110 Deg F. METHOD: TCC NOTE: Minimum

FLAMMABLE LIMITS IN AIR, & by volume (methanol):

Upper: Lower: 36.5 5.5

GENERAL HAZARD:

Combustible Liquid, can form combustible mixtures at temperatures at or above the flashpoint.

Static Discharge, material can accumulate static charges which

can cause an incendiary electrical discharge.

"Empty" containers retain product residue (liquid and/or vapor) and can be dangerous. DO NOT PRESSURIZE, CUT, WELD, BRAZE, SOLDER, DRILL, GRIND, OR EXPOSE SUCH CONTAINERS TO HEAT, FLAME, SPARKS, STATIC ELECTRICITY, OR OTHER SOURCES OF IGNITION; THEY MAY EXPLODE AND CAUSE INJURY OR DEATH. Empty drums should be completely drained, properly bunged and promptly returned to a drum reconditioner, or properly disposed of.

FIRE FIGHTING:

Use water spray to cool fire exposed surfaces and to protect personnel.

Isolate "fuel" supply from fire.

According to NFPA Guide, use foam, dry chemical, or water spray to extinguish fire.

Avoid spraying water directly into storage containers due to

danger of boilover.

This liquid is volatile and gives off invisible vapors. Either the liquid or vapor may settle in low areas or travel some distance along the ground or surface to ignition sources where they may ignite or explode.

Firefighters must be equipped to prevent breathing of vapors or products of combustion. Wear an approved self-contained

breathing apparatus and protective clothing.

HAZARDOUS COMBUSTION PRODUCTS:

May evolve NOx under fire conditions. Containers exposed in a fire should be cooled with water to prevent vapor pressure buildup leading to a rupture.

SECTION 9 - REACTIVITY INFORMATION

STABILITY: Stable

HAZARDOUS POLYMERIZATION: Will not occur CONDITIONS TO AVOID: Heat, sparks, flame.

HAZARDOUS DECOMPOSITION PRODUCTS: None

INCOMPATIBILITY: Avoid contact with strong oxidizers (eg. chlorine, peroxides, chromates, nitric acid, perchlorates, concentrated oxygen, permanganates) which can generate heat, fires, explosions and the release of toxic fumes.

THERMAL DECOMPOSITION PRODUCTS: In the event of combustion CO, NGX, CO, may be formed. Heating in air may produce irritating aldehydes, acids, and ketones. Do not breathe smoke or fumes. Wear suitable protective equipment.

SECTION 10 - PRECAUTIONARY LABEL INFORMATION

WARNING: Harmful or fatal if swallowed. May cause kidney and nervous system damage. Contains methanol. May cause blindness if swallowed. Causes irritation to skin and eyes. Combustible. Prolonged inhalation of vapor may be harmful. Do not get in eyes, on skin or on clothing. Wear goggles and face shield when handling. Avoid prolonged or repeated breathing of vapor. Use with adequate ventilation. Do not take internally. Do not use, store, spill or pour near heat, sparks or open flame. Wash thoroughly with soap and water after handling. Wash contaminated clothing thoroughly before re-use. Discard contaminated leather clothing. KEEP OUT OF REACH OF CHILDREN. Keep container closed when not in use. Ground all equipment to prevent accumulation of static charge.

Empty containers may contain residual product. Do not reuse container unless properly reconditioned.

SECTION 11 - SPILL AND DISPOSAL INFORMATION

SPILL CONTROL AND RECOVERY:

Those responsible for control and recovery should wear protective equipment. If it is possible to generate vapors or mists, a NIOSH approved respirator is recommended.

Eliminate sources of ignition. Prevent additional discharge of material.

Small liquid spills: Contain with absorbent material, such as clay, soil or any commercially available absorbent. Shovel reclaimed liquid and absorbent into recovery or salvage drums for disposal.

Large liquid spills: Dike to prevent further movement and reclaim into recovery or salvage drums or tank truck for disposal.

5

Prevent liquid from entering sewers, watercourses, or low areas. Contain spilled liquid with sand or earth. Do not use combustible materials such as sawdust.

Recover by pumping (use an explosion proof or hand pump) or with a suitable absorbent.

Dispose in accordance with local, state and federal regulations. Use qualified disposal company to incinerate, or otherwise discard, at an approved facility.

DISPOSAL: If this product becomes a waste, it meets the criteria of a hazardous waste as defined under the Resources Conservation and Recovery Act (RCRA) 40 CFR 261. Hazardous Waste D001.

As a hazardous liquid waste, it must be solidified with stabilizing agents (such as sand, fly ash, or cement) so that no free liquid ramains before disposal to a licensed industrial waste landfill (Hazardous Waste Treatment, Storage and Disposal facility). A hazardous liquid waste can also be deep-well injected in accordance with local, state, and federal regulations.

SECTION 12 - REGULATORY INFORMATION

The following regulations apply to this product:

TOXIC SUBSTANCES CONTROL ACT (TSCA):

The chemical ingredients in this product are on the 8(b) Inventory List (40 CFR 710).

CERCLA/SUPERFUND, 40 CFR 117, 302:

This product contains methanol, a Reportable Quantity (RQ) substance and if 24,000 pounds of product are released, it requires notification to the NATIONAL RESPONSE CENTER, WASHINGTON, D.C. (1-800-424-8802).

SARA/SUPERFUND AMENDMENTS AND REAUTHORIZATION ACT OF 1986 (TITLE III) - SECTIONS 302, 311, 312 AND 313:

SECTION 302 - EXTREMELY HAZARDOUS SUBSTANCES (40 CFR 355): This product does not contain ingredients listed in Appendix A and B as an Extremely Hazardous Substance.

SECTION 311 and 312 - MATERIAL SAFETY DATA SHEET REQUIREMENTS (40 CFR 370):

Our hazard evaluation has found this product to be hazardous. The product should be reported under the following EPA hazard categories:

- X Immediate (acute) health hazard
- X Delayed (chronic) health hazard
- X Fire hazard
 - Sudden release of pressure hazard
- Reactive hazard

6

P 2:

SECTION 313 - LIST OF TOXIC CHEMICALS (40 CFR 372):
This product contains the following ingredient(s), (with CAS # and % range) which appear(s) on the List of Toxic Chemicals.

<u>Component</u> Methanol CAS NO. 67-56-1 MAXIMUM 16.0

California Proposition 65:

This product contains no known chemicals known to the State of California to cause cancer or reproductive toxicity.

SECTION 13 - USER'S RESPONSIBILITY

This product material safety data sheet provides health and safety information. The product is to be used in applications consistent with our product literature. Individuals handling this product should be informed of the recommended safety precautions and should have access to this information. For any other uses, exposures should be evaluated so that appropriate handling practices and training programs can be established to ensure safe workplace operations. Please consult your local sales representative for any further information.

SECTION 14 - DISCLAIMERS

Some of the information presented and conclusions drawn herein are from sources other than direct test data on the product itself.

The information in this MSDS was obtained from sources which we believe are reliable. However, the information is provided without any warranty, express or implied, regarding its correctness.

The conditions or methods of handling, storage, use and disposal of the product are beyond our control and may be beyond our knowledge. For this and other reasons, we do not assume responsibility and expressly disclaim liability for loss, damage or expense arising out of or in any way connected with the handling, storage, use or disposal of the product.

This MSDS was prepared and is to be used only for this product. If the product is used as a component in another product, this MSDS information may not be applicable.

This MSDS has been prepared in accordance with the requirements of the OSHA Hazard Communication Standard (29 CFR 1200).

7

Date Prepared: Feb 1, 1994

CONTROL OF MICROBIAL ACTIVITY

Knowledge of the behavior of microorganisms in water is extremely important, since their presence can cause corrosion or plugging of equipment or the injection wellbore.

Corrosion problems mainly arise from the presence of sulfatereducing bacteria (SRB), slime-forming bacteria, iron-oxidizing bacteria, acid-producing bacteria, and sometimes other miscellaneous organisms, including algae, sulfur bacteria, yeasts, and molds.

Bacteria, the largest group of troublesome organisms, cause the most varied problems. They are usually classified in water treatment by the types of problems they cause: slime-forming bacteria, iron-depositors, sulfate-reducers, and nitrifying bacteria. Each group has its preferred environment and thrives in specific areas of a water system.

The reason that bacteria can create so much trouble for us is that they can multiply with incredible speed. They can double their population in 20 minutes under many conditions, which means that a single bacterium can become a thriving colony of millions of bacteria in a very few hours. A handful of slime from a water may contain as many bacteria as there are people in the world.

Bacteria flourish under an extremely broad range of conditions, although they grow best in the pH range of 5 to 9 and at temperatures of -18 to 80°C. They also prefer fresh water, but can do nicely in brines. Bacteria have been found in packer fluids at 2500 m and in soil in the High Arctic. They are very hardy.

Until recently, it was believed that the anaerobic SRB caused the majority of the problems with respect to microbiological corrosion. As a result, most of the research was focused in this area. However, it is now apparent that facultative (bacteria that can grow in either the presence or absence of free oxygen) anaerobic organisms are as important as obligate (restricted to a particular environment) anaerobic organisms. It is recognized that mixed populations of bacteria contained in a biofilm are the most damaging. As a biofilm forms, aerobic organisms in the outer layers of the film create an anaerobic environment at the base of the film. The aerobes, in turn, produce metabolites that increase the activities of the anaerobes. The biofilm's layered structure enables it to support vigorous growth of a diverse community of bacteria. The primary challenge today is to establish methods to monitor sessile bacteria (bacteria that attach to a surface) as well.

AUG 17 '95 11 01

TYPES OF BACTERIA

Sulfate Reducing Bacteria

Sulfate reducers (Desulfovibrio Desulfuricans) probably cause more serious problems in cilfield injection systems than any other bacteria. They reduce sulfate ions in the water to sulfide ions, resulting in H2S as a by-product.

Sulfate reducing bacteria live in groups or colonies on the pipe wall, and pits occur wherever they reside. Bacteria find it much easier to colonize on the pipe wall than in a moving stream of fluid. Any time you find bacteria in the water this means that there are many, many more securely attached to the walls of the piping and tankage.

Sulfate reducing bacteria are most likely to be found in stagnant or low velocity areas, and beneath scales or sludges. Common places for bacterial activity in injection systems are tanks, filters and the rat hole in injection and water source wells.

Sulfate reducing bacteria are anaerobic bacteria. However, they are quite capable of thriving in oxygenates systems, providing that they can find some scale or sludge to congregate under. Here they can usually find a sufficiently oxygen-free environment to live happy, healthy lives. Bacteria are very difficult to kill if they are effectively shielded by scale or debris.

Iron Bacteria

Iron bacteria deposit a sheath of ferric hydroxide around them as they grow. The iron is obtained from soluble iron ions in the water. Examples of iron bacteria are Siderocapsa, Gallionella, Sphaerotilus and Crenothrix. They are classified as aerobic bacteria, although they can apparently grow well with only trace amounts of oxygen.

Iron bacteria can cause both corrosion and plugging. Although they do not directly participate in the corrosion reaction, corrosion can result either from the activity of sulfate reducers under the hydroxide sheath or by the creation of an oxygen concentration cell.

Large number of iron bacteria can precipitate a sufficient quantity of ferric hydroxide to cause severe plugging problems.

Slime Formers

Slime forming bacteria are a general class of bacteria capable of producing dense masses of slime on solid surfaces. Examples are Pseudomonas, Flavobacterium, Aerobacter, Escherichia, and Bacillus. They are magnificent pluggers and contribute to corrosion in the same ways as iron bacteria by shielding part of the surface. Slime can be expected in either brine or fresh water systems, although they are more common in waters of low salinity.

Slime forming bacteria may be found in either aerobic or anaerobic system. However, they are more generally a problem in aerobic systems.

617 862 6482 PAGE 818

Typical Microorganisms and Their Associated Problems

Type of organism

Type of problem

- A. Bacteria
- 1. Slime-forming bacteria form dense, sticky slime with subsequent fouling. Water flows can be impeded and promotion of other organism growth occurs.
- 2. Iron-depositing bacteria Cause the oxidation and subsequent deposition of insoluble iron from soluble iron.
- 3. Sulfate-reducing bacteria Generate sulfides from sulfates and can cause serious localized corrosion.
- 4. Anaerobic corrosive bacteria

Create corrosive localized environments by secreting corrosive wastes. They are always found underneath other deposits in oxygen deficient locations.

B. Fungi Yeasts and molds

Cause the degradation of wood in contact with the water system. Cause spots on paper products.

C. Algae

Grow in sunlit areas in dense fibrous mats. Can cause plugging of distribution holes on cooling tower decks or dense growths on reservoirs and evaporation ponds.

GLASS TUBE TYPE PURGE METER INSTRUCTION SHEET 1-1/2 AND 3 INCH MODELS

This instruction sheet provides installation, operation and asimtonance instruction for the Hellace & Tiernan Glass Tube Type Zurge Meters which are furnished in two scale lengths, 1-1/2 or 2-insh, with or without control valves. A flow controllar (accessory item) is available for use with the purge meter with control valve. Furge meters are available for was with 116 stainless steel frames, with wetted parts (and fittings) of 116 stainless steel. O-ring seeks may be either Buna-H, Viton or EPR as desired. Centrel velve stans are furnished either with knobe for hand operation or with slots for strawdriver adjustment. All parts are readily replaceable and completely interchanceable. An integral check valve is standard on the no valve and valve better configurations.

WARNING: TO AVOID POSSIBLE SEVERE PERSONAL INSULT OR CAPACE TO THE EQUIPMENT, THIS EQUIPMENT SHOULD BE INSTALLED. OPERATED AND SERVICED ONLY BY TRAINED, QUALIFIED PERSONNEL MNO ARE THOROGOMET PANILLAR WITH THE ENTIRE CONTENTS OF THIS INSTRUCTION BOOK.

VALUNTING: THE FOLLOWING SAFETY ARLATED PRECAUTIONS HELT BE COSSILOVED:

- 1. PLUID: DO NOT USE GLASS TUBE METERS FOR TOKIC OR MALADOUS FLUIDS OR FLUIDS THAT ATTACK CLASS, REFER TO NOT CAT. NO. 300,001 FOR CHEMICAL COMPATIBILITY AND MATERIAL SELECTION IF ASPLICATION IS TO BE CHANGED.
- OPERATING PRESSURE: DO NOT EXCES OPERATING PRESSURE AND TOMBERATURE LIMITS PRESENTED IN THIS INSTRUCTION SALET.

 TUBE SHIELD: ALMAYS USE FRONT TORE SHIELD PROVIDED TO PROTECT OPERATOR IN THE EVENT OF TUBE BREAKAGE.
- RELIEVE PRESSURE AND DRAIN SYSTEM DEFORE SERVICING.

All connections are 1/4° EPT. The cutlet connection must be at the top.

PRESENTAS/TOWNSATURE LIDICES							
TORE RETAINER	0~KINCS	PRESSURE (PRIC)	TOWERATORE ("F)				
Rypar	Juna-V	200	200				
Xypaz .	Vitee	200	299				
316 8.8.	Vites	250	250				
Kynas	EPR	300	200				
316 8.8.	EPR	250	250				

DISCOUNTY AND ASSESSED.

- 1. Compress the shield slightly to diseases the lugs on one side of the shield from the slots in the frame. Lift the free side out and remove the shield from the Crame.
- 2. Actate nut from left to right until it is and the way up
- 3. Lift metaring tube and recainer. Full out bettem of tube .e remove.
- To remove check stem, turn metering tube retainer until the notch permits the retainer to pass the tab in the frame.
- 5. To avoid possible damage to valve stam or valve seat, always have control valve in open position before removing or installing valve stem adapter or seet.
- 6. For valve stem removal, first remove control valve stem adapter from neter. Remove knob from valve stem, then thread stem inward through adapter.
- 7. If O-rings are swelles, crecked or hardened, remove and replace. Apply a thin coating of millions grease UIC242 to the new O-rings to facilitate meter assembly and disascembly.

MARKETHE: WHEN USED IN CATCEN SERVICE, TO AVOID SEVERE PERSONAL INJUST DUE TO FIRE OR EXPLOSICE, LUBRICATE CHLY WITH MALOCARDON LUBRICANT UZZERG.

g. When reinstalling tube, tightes tube aut mederately, and rotate tube to aid engagement of O-rings Check that Orings are not pinched and full contact lime is visible through mode of glass tube.

DEVENITING THE PORCE METER WITH CONTROL VALVE

- 1. Remove the metaring tube retainer and the check-valve stem from the meter. Discust the check-valve and reinstall the recainer
- . Install the metering tube with the bettem of the scale toward the metering tube recainer
- 3. If the mater is for Alk-HIGH CAPACITY, the matering tube retainer must be observed (see table) and the MR 102 flow insert installed on the new retainer.
- 4. If a check valve is required for a particular system, a check valve similar to Nupro, Cat. no. 28-4G25-1/3 can be installed on the meter extlet.

PARTS CREATED INFORMATION

The complete erdering number of the mater is marked on the back of the frame when the mater is assembled in the factory. This number is applied in such a way that, if field changes are made, the number may be removed or changed to suit.

The first two digits of the ordering number identify the frame and fittings as shown in the table on page I and the letter with the nest four digits identifying the tabe and frest as shown in the table on page 3.

TO EMEGRE PROPER AND SAFE OPERATION OF THIS ECCUPROSET, USE OFFI HAT LISTED PARTS EXCEPT FOR COMPUNCIALLY AVAILABLE PARTS AS IDENTIFIED BY CONGLETE DESCRIPTION ON PARTS LIST THE USE OF UNLISTED PARTS CAN RESULT IN EQUIPMENT MALFUNCTIONS CAUSING POSSIBLE SEVERE PERSONAL INJURY.

The following label her been attached to the equipment and is listed below

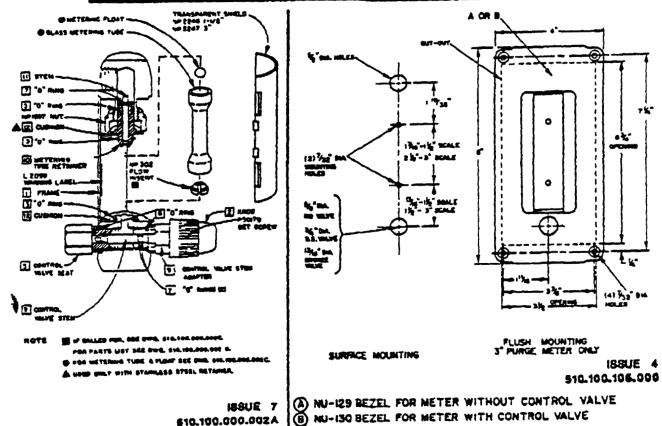
MARNING LARRE: 12099 SEE INSTRUCTIONS FOR PRECAUTIONS TO MOUD INJURY DO NOT OFERATE WITHOUT SKIELDS

WJA 510 100

SUM KILLS DAL

_ _ _ _ _ - _ -

, CO33


						- Kina			- Non			
			TU	AND FL	DAT		- N	7.04	ÇTIÇM SHEL			/LOAT
		LE UNT	6-12	0.00	-	X A	7	PART			T	PART NUMBER
	WATER	I AM		S CALS	WATE	S CALL	HOM	-		\$12.2	FOR	MATERIAL
Г	ALM SEM	Migo secon	•		Cara	1000	1	1010 0	17	74		1 7 A) 10 5 APT 1004
ŧ	10.00		CEM		\downarrow	4	•	475		1.4		P 474 54
3	-	the sccar		Der	1000	0000	1			175	┾╬	P 440 38 A.A.
1	THE COM		Carr		+	+	+	1487 10		+ ∺	+	7 4140 14 ES
ELIRA	10000	IN SCORE			COST	6067	1	-	12(1.46		P ASTO TANTAL U
[-	L	M SCO		Phot	-	-	1	4010 6		1 3	<u> </u>	43 10 19 14
-	4100	1-0	7 000	0001	 	 	 - -	14045 3	2)	7 8		1
1		<u> </u>			1493		 	W	, ,	7	•	
										3	1	}
	-	 	000	507	 		+	उन्ह ना		4	Ì	}
	L	<u> </u>		1	con	9973	 	-010 A		1	i	{
		14 300		Lar				, white je]	(1
	1000		-	 		1007	-	A-10 11		70	-	* 2000 34 33
		L		+	1488			¥73 W		1 ~	•	
	30 CCM									1 .		1
		 	-	-	9000			A12 .05		} ⊢		ł
	•		-	300	-	0000	 	310 12		1		1
		U 100		9001				₩7D 34		1		ł
								212 115		ليبا		
,	U CON	1	45	-	-			MP17 139		270	•	HELL SED BLACK OLD
CANCIL	# CO4		-	1	A4973			MALE 14	1	1 1		[
\$					1663			करा ग		1 1		}
			Cape	100				910 39		1 1		{
₹		40 5041		5497	ČED 2	ôgo		 6 '71 2 '71		1 1		}
3	}	44 22		-		1000		-10 4	 	1	_	
	12 071		A					P19 30		30	•	AA DE 4000C 1
					A 980			WES 163		1 1		
- 1	## CC#		- COLOR		7-			401 13		1 1		
j	——	-	CE	544				w13 31		1 1		
					Cale	9-40		~>0 49				
į	7	E SON		2 107		Real		<u> </u>	 	j i		
- 1				041					 	70	•	1714 150 BACK GLA
- 1						2143		₩10 44			•	
		-		- 681		(11		W17 11		1		
-	10 0m	JALE BOTH	APR	2177			- 0	Jet 37		79	•	THE HOLE BLACK GLA
- 1					AFO	EM3	10	-271				
-									 	1 1		}
-	4000	~	_ 4-40	_				-73 42		75	_	→ res 34 44
					AGS			F23 44				
- }	200 000		941					#2F 40		1		
1	-		City	 	943	 		727 44 720 48	}) [
ł	-				Ç PP D			-10		1		
ı			AWA					PRA 41		54	•	D 20 14 IT
- {	L		3		700			14 AKW	 			
J	740 004	- 1		-	200			FIT 100	 		1	
Ì	-		Call				1	- 0r			i	
ł					COS			31C 115		لمييا	لبيد	
ſ		•		001	}	0113		AND 11		7	•	* 40634 316 3.E.
- }		34 SON									- 1	
<u>.</u> l						100		J-13 144				
įί	13 0		ALM	—	2000	{		219 41		24	<u>.</u>	The Column and the
2	10.0 Gar	ł			-			P16 76	 		•	
۱۰			gred1					<i>-</i> 11			- (
- {	1				3743			23G 101	-			
5		}	CARI		cus			PE 43	-			I
				Dan				PIC .		-	•	
L		-,-				2007		JC 11		1	- 1	
Libra									<u> </u>			
LIDIL				grain .								
) UDIN			A & f			(1-0)	•	20 A 40		50	-	W 34 "Ediana"
) WOW			A.#1		A493		•			50	•	er se rediage
) WOW			A@1					- · · ·		50	•	NO 34 SALAMA
) HOM	200 CON				AM3 \$45			20 A 40		50	•	क्ष ३व ज्यांत्रस्य
) HOM			C/M3	griot							•	
) HOM	200 CON				943	(14)				94 94	•	6 14 24 31 ST
) Man	200 CON	646 SCTH		griot	943							

510.100.000 002 C 188UE 5

FLOW CONTROLLERS

1

c	MODEL MUMBER	outlet	MAX. CAPACI	TIES	AAX TOWN	MAX INLET PRESS.	PRESS.	MATERIA	ALS OF CO	TRUCTION
Ŕ	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		SCFH	SPH	_	PSI	PSI	BOOY	DIAPH	STEM
₹0r	5830 5810	5840 5820	30 30	5 5	200 250	200	6	BAASS 31655	SUMA-N TEFLON	31633 31653
I-OI	5870 5850	5880 5860	110 110	40	200 250	200 200	8	31665	BUNA-H TEFLON	31655 31655

CHARACTE AND WARRANTY

Solar wasters for a people of any year after shipment that the equipment or material at its manufacture is froe from circuits in wastership and materials. The assessing people for any breach of the wastership is the replacement Lo.b. shipping people of the delivative parts. It is yes discover a delect in material or westership, it must promptly northy Solar in withing. In my event such such northication be exceeded by Solar later than 13 manufacture and shipment. He can't be called a wastership that the prompts are materials. Computer or other apparatures and materials are characteristics for characteristics and other materials. brought more than 16 marries offer the date of sharrest of the equipment of material. Consulan or other decomposition by chemical carifors is specifically established of a detect converted inscription of that the establish shall not captly be obtained officernest. Buyet does not variety (30 contrage occursed by use of the horse for purposes of the trial flow of the contrage of the horse for purpose of the trial of the horse occurs of the horse
Storement and instructions set forth herein are based upon the best internation and practices known to Walcor & Terran, Inc., but it should not be commed that every accorptable safety procedure a commend herein. Of necessity this company agreet distinction that accions with such accions and instructions will need in the company elements of
PAGE 4

WIA \$10.100 (ISSUE B)

19. Product Specification Sheets for PVC Liner

214

Phone: (303) 841-2022

Fax: (303) 841-5780

1062 Singing Hills Road, Parker, Colorado 80134

40 MIL PVC GEOMEMBRANE LINER

Property	Test Method	Required NSF 54	Typical <u>Values</u>
Gauge (nominal)		40	
Thickness Mils (minimum)	A\$TM D1593	38	39.5-40 5
Specific Gravity (minimum)	ASTM D792	1.20	1.280
Minimum Tensile Properties (each direction)	ASTM D882		
Breaking Factor (pounds/inch width)	Method A (1 inch wide)	92	MD 120 TD 115
2. Elongation at break (%)	Method A (2° jaw separation)	350	MD 500 TD 550
3. Modulus (force) at 100% elongation (pounds/inch width)	Method A	36	MD 60 TD 55
Tear Resistance (pounds, minimum)	ASTM D1004 Die C	10	MD 150 TD 160
Low Temperature, ^{OF}	ASTM D1790	-20	Pass
Dimensional Stability (each direction, % change maximum)	ASTM D1204 2120F, 15 min	Less than 5%	Pass
Water Extraction (% loss maximum)	ASTM D3083 (as modified in Annex A)	0.35	011 -
Volatile Loss (% loss maximum)	ASTM D1203 Method A	0 50	0 40
Resistance to Soil Bunal (% change maximum in onginal value)	ASTM D3083 (as modified in in Annex A)		
1 Breaking factor		<u>+</u> 5% <u>+</u> 20%	Pass Pass
2 Elongation at break 3 Modulus at 100% elongation		± 20% ± 20%	P ass
Hydrostatic Resistance (pounds/sq in min.)	ASTM D761 Method A	82 (110)*	157

^{*} Proposed Value

Phone: (303) 841-2022

Fax: (303) 841-5780

1062 Singing Hills Road, Parker, Colorado 80134

INSTALLATION PREPARATION GUIDE

- 1. Subgrade upon which liner is to be placed must be smooth and free from sharp rocks, roots, vegetation, and other foreign materials.
- 2. Dig anchor trench as shown on shop drawings or engineered drawings. Always take dirt to outside of trench.
- 3. Sandbags are required to keep panels in place during installation—minimum of 25 bags per panel.
- 4. Tools and equipment include: wiping rags, paint brushes 3" or 4", handling bar 3" or 4" schedule 40-10', scissors, 1-gallon buckets.
- 5. All PVC liners should be covered if extended life is expected. Side slopes should be no steeper than 3 to 1. Material will last up to 5 years exposed, 20 years covered.
- Driving on liner is permitted only with 12" dirt cover on lining. No sharp turns or excessive speeds allowed.
- 7. Structures, piping, concrete, drains, and any associated work should be completed prior to lining installation.
- 8. Care should be taken to avoid wrinkles in the seam areas and around mechanical attachments.
- Take time when unloading and placing rolls of lining to avoid damage. Verify location of sheet before unrolling and placement to avoid improper alignment.
- 10 If problems or questions anse, contact Colorado Lining Company for assistance, (303) 841-2022 or (800) 524-8672.

OPERABLE UNIT NO 7 PASSIVE SEEP COLLECTION AND TREATMENT SYSTEM DRAFT TITLE II DESIGN DRAWINGS

ROCKY FLATS \subset SDEPARTMENT OF ENERGY SEPTEMBER 21 1995 ENVIRONMENTAL TECHNOLOGY SITE

GOLDEN COLORADO

DRAWING INDEX

DRAWING N	DESCRIPTION
0101	COVER SHEET
0102	SITE LAYOUT PLAN AND PROFILE
0103	PASSIVE TREATMENT SYSTEM PLAN AND SECTIONS
0104	PASSIVE TREATMENT SYSTEM DETAILS
0105	PASSIVE TREATMENT SYSTEM DETAILS
0106	PASSIVE TREATMENT SYSTEM DETAILS
0107	FI FCTRICAL SCHEMATIC

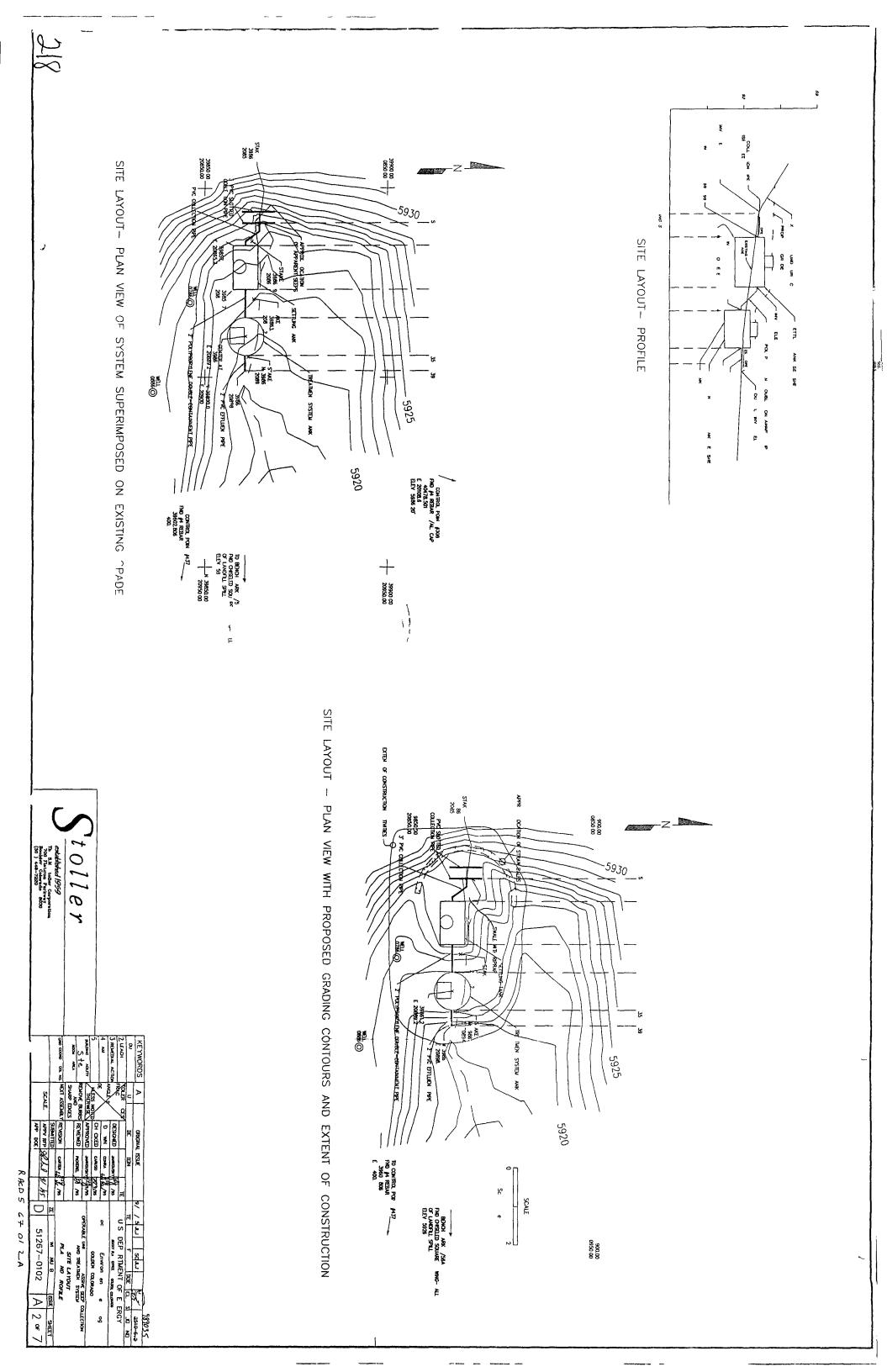
LOCATION MAP

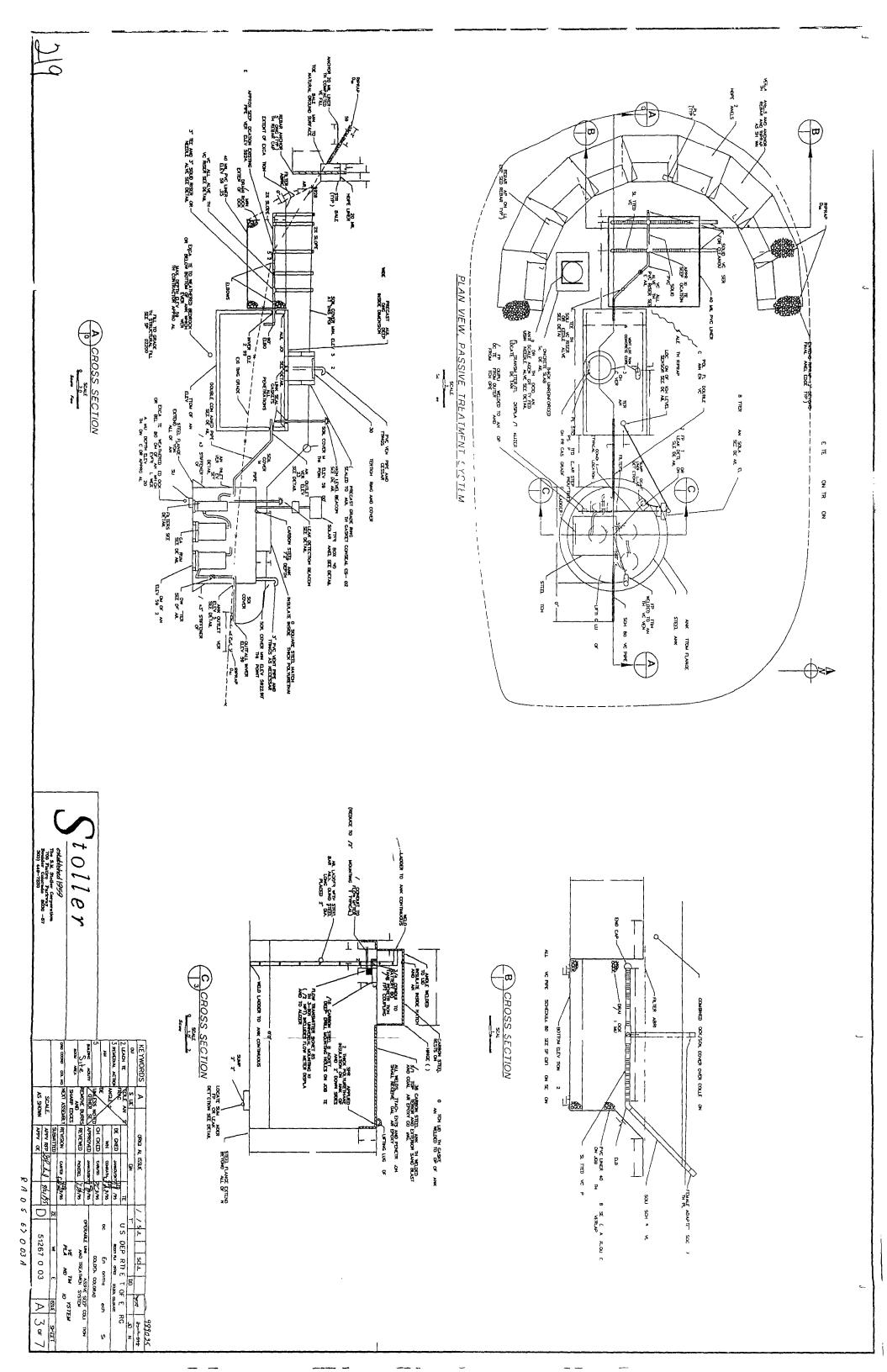
oller

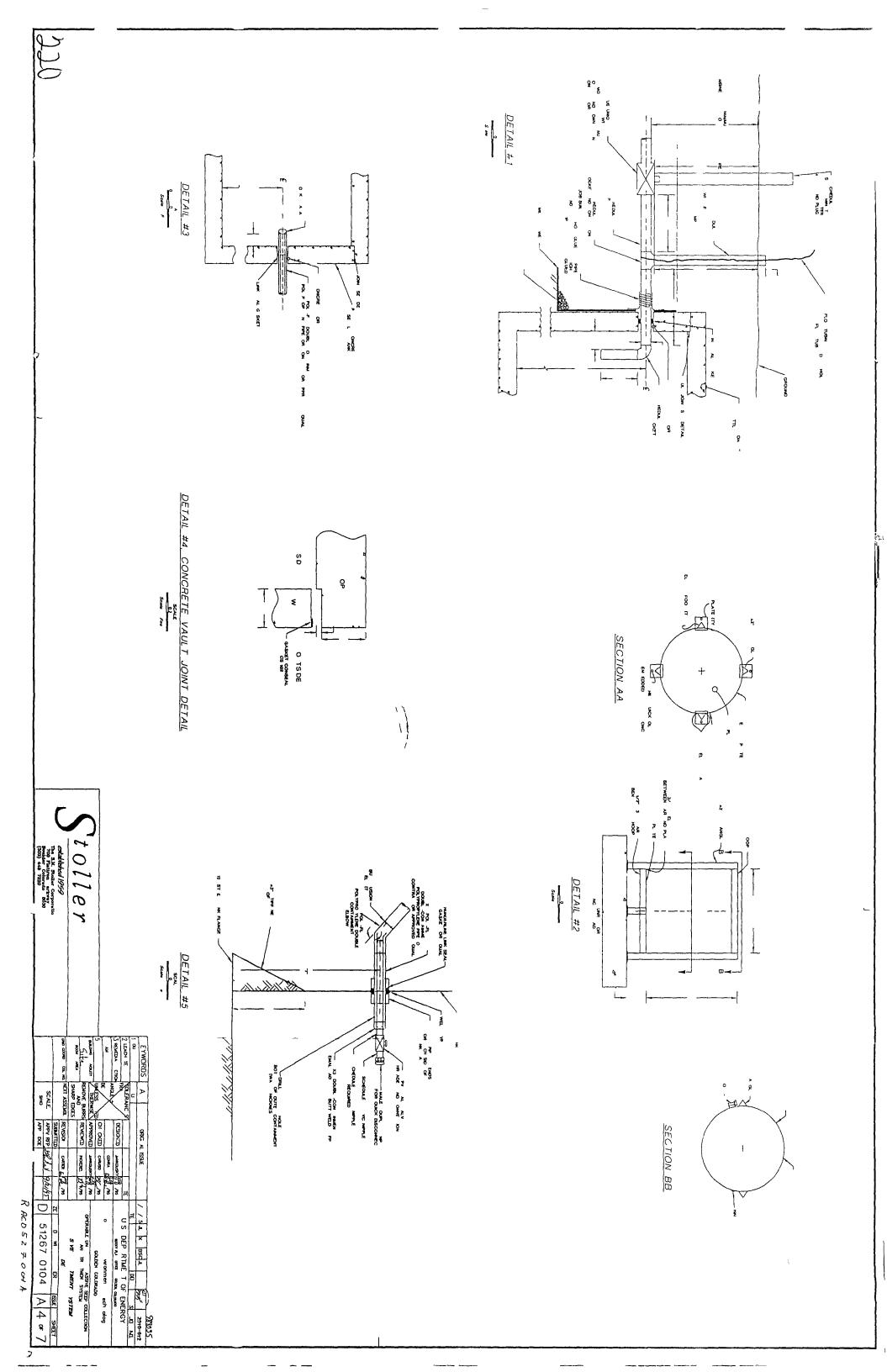
SITE PLAN

VICINITY MAP

OPERABLE UM SOVE SEEP COLLE TION US DEPARTME T OF ENER 5 267-0 0 COLDEN COLORADO A 1 or 7

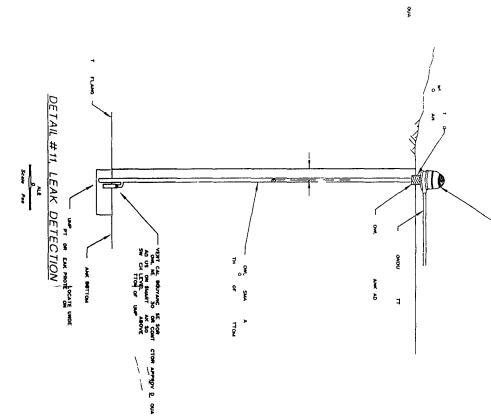

ğ

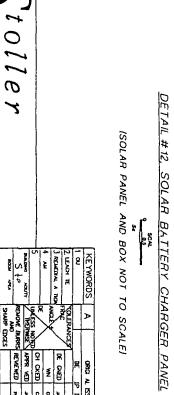

F


₹¥


TE NO

PCDS/120

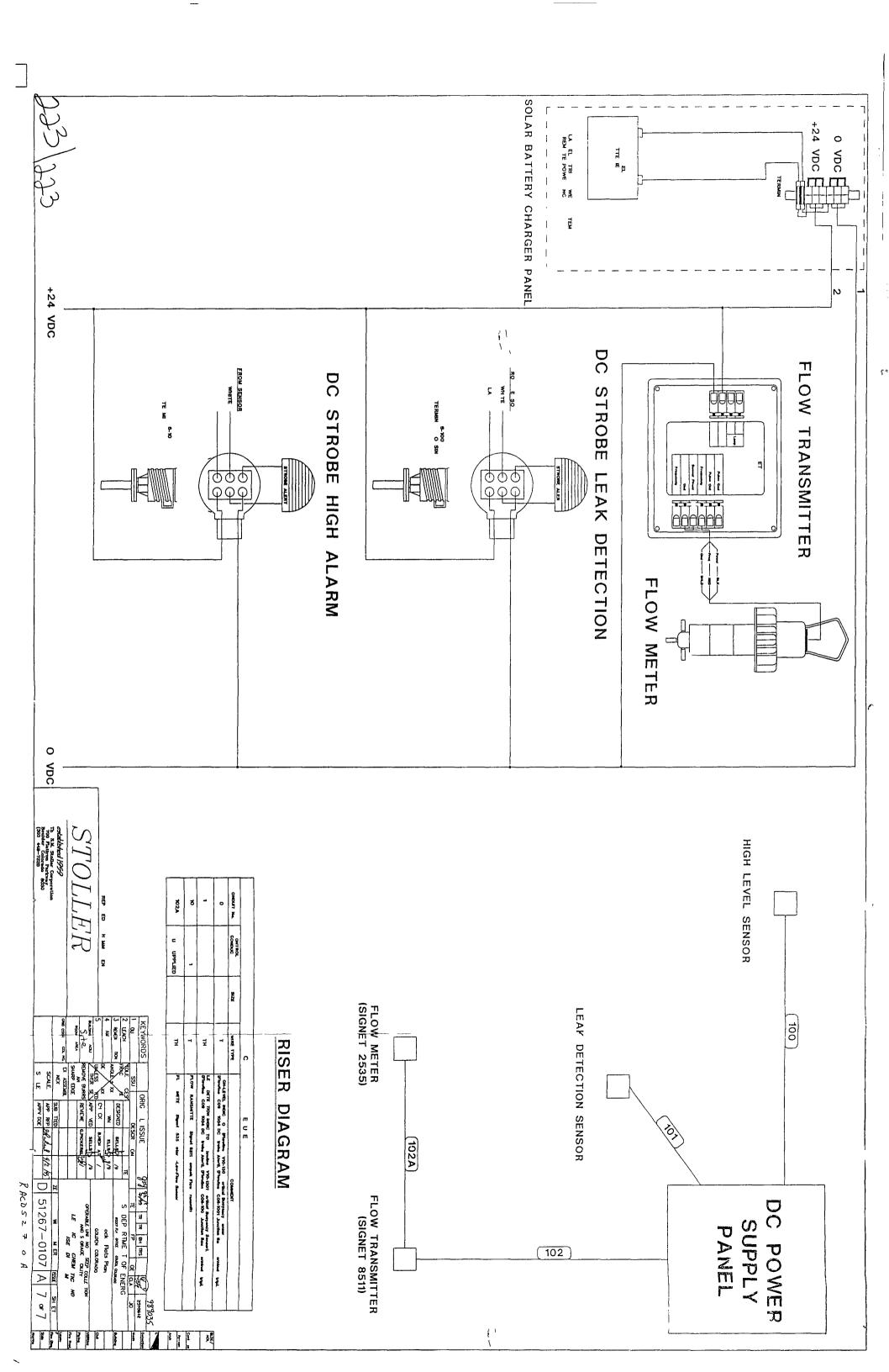



DETAIL HIO HIGH LEVEL BEACON

And the same of the same

סראש אאר

00 0₽.¥



CONCRETE PE DE TR-

5

	9		Ţ	3		+	<u>ي</u> د	2 4	5	i i)
	ONE COOPE COL MG. NEXT ASSEMBLY REVISION	200	l	AUTON DAGGE		MY	REMEDIAL A THOM	LEVON IE	-	KEYWORDS	
	PESSY LICEN	SHARP EDGES	UNV ING BAONGBA	THERWIS		×		COLERANC		Α	
E Mers	BLY REMSION	Ë	REMOVE BURRS REVIEWED	APPR VED	SH CKED	ž	DE CNED	100	Ħ	ORIGI AL ISSL	
	CARTO CALL		TOWN /	mecuser	Cuando Se	The Marco	(USTEDBIN		B	Ø	
	6/25		36/35	- SA	Ŝ	3	3	Ħ		Ļ	
7			:	OPERABLE		8		s c	Ħ	/ / Sa	
£	30	¥	AND THE D	20	800	5° 8	240 rt 1300	EP RTME		rrps	
Fac:		THENT YSTEN	MAN THE MON SHE OWN	DECRABLE UNE NO ASSIVE STEP COLLECTION		3	SONOTE NOTE THE PLANT CONTROL	S DEP RIME T OF E ERG	50 C S	J,	
		A STEEL		O I FOTON		8		RC	z	2518 - 612	189035
_											_

cotableted 1959
The S.M. Stoller Corporation
700 Thatiro Parkvay
Boulder Colorado 8030 57
(303) 449-7220

